Advertisement

Data Mining Models for Anomaly Detection Using Artificial Immune System

  • Vaishali MehareEmail author
  • Ramjeevan Singh Thakur
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 34)

Abstract

In this paper, a new technique is used by implementing artificial immune system (AIS). Artificial immune system is inspired by the human immune system (HIS). It has been applied for solving complex computational problem in classification, pattern recognition, and optimization. Proposed method developed a new model for anomaly detection process by negative selection algorithm (NSA) and classification algorithm. NSA algorithm of AIS is based on the principle of self- and nonself-discrimination in the immune system.

Keywords

Artificial immune system Data mining Negative selection algorithm Classification Anomaly detection 

References

  1. 1.
    Abhya, K.K., Ranjeeta, J., Sumaiya, A.: Data mining techniques for intrusion detection: a review. IJARCCE 3(6), 6938–6942 (2014)Google Scholar
  2. 2.
    Tammayee, S.S., Suhasini, A.: A survey and comparative study of different data mining techniques for implementation of intrusion detection system. INPRESSCO Int. J. Curr. Eng. Technol. 4(3), 1288–1291 (2014)Google Scholar
  3. 3.
    Shikha, A., Jitendra, A.: Survey on anomaly detection using data mining techniques. In: 19th International Conference on Knowledge Based Intelligent Information and Engineering System, pp. 708–713. Elsevier (2015)Google Scholar
  4. 4.
    Nema, A., Tiwari, B., Tiwari, V.: Improving accuracy for intrusion detection through layered approach using support vector machine with feature reduction. In: Proceedings of the ACM Symposium on Women in Research 2016, pp. 26–31, ACM (2016)Google Scholar
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3) (2009)Google Scholar
  6. 6.
    Sushil, K.C., Vineet, R., Nirupama, T.: Anomaly detection in network using data mining techniques. Int. J. Emerg. Technol. Adv. Eng. 2(5), 1–7 (2012)Google Scholar
  7. 7.
    Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial Immune System (AIS) research in the last five years. In: Congress Evolutionary Computation (CEC’03), vol. 1, pp. 123–130 (2003)Google Scholar
  8. 8.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Research in Security and Privacy 1994, Proceedings, pp. 202–292 1994 IEEE Computer Society Symposium (1994)Google Scholar
  9. 9.
    Gonzalez, F., Dasgupta, D., Kozma, R.: Combining negative selection an classification techniques for anomaly detection, IEEE (2007)Google Scholar
  10. 10.
    Zhengbing, H., Ji, Z., Ping, M.: A novel anomaly detection algorithm based on real-valued negative selection system. In: IEEE Workshop on Knowledge Discovery and Data Mining, pp. 499–502 (2008)Google Scholar
  11. 11.
    Tiwari, K.K., Tiwari, S., Yadav, S.: Anomaly intrusion detection using data mining techniques. Int. J. Adv. Comput. Technol. 2(4), 21–25 (2010), ISSN-2319-7900Google Scholar
  12. 12.
    Lingxi, P., Chen, W., Xieh, D., Gao, Y., Liang, C.: Dynamically real-time anomaly detection algorithm with immune negative selection. Int. J. Appl. Math. Info. Sci. 7(3), 1157–1163 (2013)Google Scholar
  13. 13.
    Kalarani, P., Brunda, S.S.: A survey on efficient data mining techniques for network intrusion detection system (IDS). IJARCCE Int. J. Adv. Res. Comput. Commun. Eng. 3(9), 8028–8031 (2014). ISSN 2278-1021Google Scholar
  14. 14.
    Alsharafi, W.M., Omar, M.N.: A detector generating algorithm for intrusion detection inspired by AIS. ARPN J. Eng. Appl. Sci. 10(2) (2015). ISSN-1819-6608Google Scholar
  15. 15.
    Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evol. Comput. 11(4), 521–540 (2007)Google Scholar
  16. 16.
    Swati, P., Nipin, G.: Basics of artificial immune system and its application. IJSAE Int. J. Sci. Res. Educ. 3(5), 3509–3516 (2015)Google Scholar
  17. 17.
    Jinquan, Z., Xiaojie, L., Caiming, L., Lingxi, P., Feixian, S.: A self-adaptive negative selection algorithm used for anomaly detection. Prog. Nat. Sci 19(2), 261–266 (2009)Google Scholar
  18. 18.
    Zheng, X., Zhou, Y., Fang, Y.: The dual negative selection algorithm based on pattern recognition receptor theory and its application in two class data classification. J. Comput. Sci. 8(8), 1951–1959 (2013)Google Scholar
  19. 19.
    Zeng, J.: Computer malicious executables detection based on real-valued negative selection algorithm. Int. J. Appl. Math. Info. Sci. 9(2), 1089–1094 (2015)Google Scholar
  20. 20.
    Daudi, J.: An overview of application of artificial immune system in swarm robotic, research article, ARA. Adv. Robot. Autom. an open access journal 4(1) 2015, ISSN-2168-9695Google Scholar
  21. 21.
    Markowska-Kaczmar, U., Kordas, B.: Negative selection based method for multi-class problem classification. In: Sixth International Conference on Intelligent Systems Design and Applications, IEEE (2006)Google Scholar
  22. 22.
    Dasgupta, D., Majumdar, N.S.: Anomaly detection in multidimensional data using negative selection algorithm, IEEE (2002)Google Scholar
  23. 23.
    Dasguptaa, D., Yua, S., Ninob, F.: Recent advances in artificial immune systems: models and applications. Appl. Soft Comput. 11, 1574–1587 (2011)Google Scholar
  24. 24.
    García-Teodoroa, P., Díaz-Verdejoa, J., Maciá-Fernándeza, G., Vázquezb, E.: Anomaly-based network intrusion detection techniques, systems and challenges. Comput. Secur. 28(1), 18–28 (2009)Google Scholar
  25. 25.
    Dasgupta, D.: Advances in artificial immune systems. IEEE Comput. Intell. Mag. 1(4), 40–49 (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer ApplicationBarkatullah UniversityBhopalIndia
  2. 2.Department of Computer ApplicationsMaulana Azad National Institute of TechnologyBhopalIndia

Personalised recommendations