Evolution of Trichocyte Keratin Associated Proteins

  • Dong-Dong Wu
  • David M. Irwin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)


The major components of hair are keratins and keratin associated proteins (KRTAPs). KRTAPs form the interfilamentous matrix between intermediate filament bundles through extensive disulfide bond cross-linking with the numerous cysteine residues in hair keratins. A variable number of approximately100–180 genes compose the KRTAP gene family in mammals. KRTAP gene family members present a typical pattern of concerted evolution, and its evolutionary features are consistent with the evolution of mammalian hair. KRATP genes might be more important in determining the structure of cashmere fibers in domestic mammals like sheep and goats. KRTAP gene variants thus should provide information for improved wool by sheep and goat breeding.


Keratin associated proteins (krtap) Hair Phenotypic evolution Molecular evolution Concerted evolution Gene clusters Mammals 


  1. 1.
    Rogers, M. A., et al. (2006). Human hair keratin associated proteins (KAPs). International Review of Cytology, 251, 209–263.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu, D.-D., Irwin, D. M., & Zhang, Y.-P. (2008). Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evolutionary Biology, 8, 241.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Khan, I., et al. (2014). Mammalian keratin associated proteins (KRTAPs) subgenomes: Disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics, 15, 779.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shimomura, Y., & Ito, M. (2015). Human hair keratin-associated proteins. Journal of Investigative Dermatology Symposium Proceedings, 10(3), 230–233.CrossRefGoogle Scholar
  5. 5.
    Niimura, Y., & Nei, M. (2003). Evolution of olfactory receptor genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12235–12240.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Niimura, Y., & Nei, M. (2005). Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proceedings of the National Academy of Sciences, 102(17), 6039–6044.CrossRefGoogle Scholar
  7. 7.
    Niimura, Y., & Nei, M. (2006). Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. Journal of Human Genetics, 51(6), 505–517.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Niimura, Y., & Nei, M. (2007). Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One, 2(8), e708.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grus, W. E., Shi, P., & Zhang, J. (2007). Largest vertebrate vomeronasal type 1 receptor (V1R) gene repertoire in the semi-aquatic platypus. Molecular Biology and Evolution, 24, 2153–2157.CrossRefPubMedGoogle Scholar
  10. 10.
    Grus, W. E., et al. (2005). Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proceedings of the National Academy of Sciences of the United States of America, 102(16), 5767–5772.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shi, P., & Zhang, J. (2007). Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Research, 17(2), 166–174.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shi, J., et al. (2003). Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proceedings of the National Academy of Sciences, 100(14), 8331–8336.CrossRefGoogle Scholar
  13. 13.
    Shi, P., & Zhang, J. (2006). Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Molecular Biology and Evolution, 23(2), 292–300.CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer, A., et al. (2005). Evolution of bitter taste receptors in humans and apes. Molecular Biology and Evolution, 22(3), 432–436.CrossRefPubMedGoogle Scholar
  15. 15.
    Parry, C. M., Erkner, A., & le Coutre, J. (2004). Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proceedings of the National Academy of Sciences, 101(41), 14830–14834.CrossRefGoogle Scholar
  16. 16.
    Nei, M., & Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics, 39, 121–152.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maderson, P. F. A. (2003). Mammalian skin evolution: A reevaluation. Experimental Dermatology, 12(3), 233–236.CrossRefPubMedGoogle Scholar
  18. 18.
    Schwartz, G. G., & Rosenblum, L. A. (1981). Allometry of primate hair density and the evolution of human hairlessness. American Journal of Physical Anthropology, 55, 9–12.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marais, G. (2003). Biased gene conversion: Implications for genome and sex evolution. Trends in Genetics, 19(6), 330–338.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Galtier, N. (2003). Gene conversion drives GC content evolution in mammalian histones. Trends in Genetics, 19(2), 65–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Plowman, J. E., et al. (2009). Protein expression in orthocortical and paracortical cells of merino wool fibers. Journal of Agricultural and Food Chemistry, 57(6), 2174–2180.CrossRefPubMedGoogle Scholar
  22. 22.
    Rogers, G. E. (2006). Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 15(12), 931–949.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gillespie, J. M. (1990). The proteins of hair and other hard α-keratins. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 95–128). New York: Springer.CrossRefGoogle Scholar
  24. 24.
    Gillespie, J. M., & Darskus, R. L. (1971). Relation between the tyrosine content of various wools and their content of a class of proteins rich in tyrosine and glycine. Australian Journal of Biological Sciences, 24(4), 1189–1198.CrossRefPubMedGoogle Scholar
  25. 25.
    Li, S. W., et al. (2009). Characterization of the structural and molecular defects in fibres and follicles of the merino felting lustre mutant. Experimental Dermatology, 18(2), 134–142.CrossRefPubMedGoogle Scholar
  26. 26.
    Parsons, Y. M., Cooper, D. W., & Piper, L. R. (1994). Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fiber diameter in a merino half-sib family. Animal Genetics, 25(2), 105–108.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou, H., et al. (2015). A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. Journal of Animal Breeding and Genetics, 132(4), 301–307.CrossRefPubMedGoogle Scholar
  28. 28.
    Fan, R., et al. (2013). Skin transcriptome profiles associated with coat color in sheep. BMC Genomics, 14, 389.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong, Y., et al. (2013). Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2), 135–141.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dong-Dong Wu
    • 1
  • David M. Irwin
    • 2
  1. 1.State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
  2. 2.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations