The Thermodynamics of Trichocyte Keratins

  • Crisan PopescuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)


This chapter is an attempt at an excursion into the world of keratins with the help of thermodynamics.

After briefly introducing some of the thermodynamic concepts involved in deciphering the behaviour of keratins, we will use them to look into the process of aggregation of keratin molecules into intermediate filaments, and keratin fibres, and then for analysing how keratin materials react to mechanical, thermal and moisture stresses, respectively.

In most of the cases entropy appears to be the major driving force of the response occurring in keratins under environmental assault. This fact points to the important role played for keratins by temperature, which, aside from influencing the kinetics of the processes (accelerating or decelerating the rates of the rates), helps increase or decrease the entropic contribution to the Gibbs free energy and, thus, allows thermodynamically the occurrence of the observed behaviour of keratins.


KIF assembling Keratin denaturation Alpha helix-beta sheet transition Glass transition Moisture sorption–desorption Keratin fibre mechanics 


  1. 1.
    Popescu, C., & Höcker, H. (2007). Hair – The most sophisticated biological composite material. Chemical Society Reviews, 36(8), 1282–1291.CrossRefPubMedGoogle Scholar
  2. 2.
    Herrmann, H., & Aebi, U. (2004). Intermediate filament assembly: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annual Review of Biochemistry, 73, 749–789.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang, Z. W., & Babitch, J. A. (1988). Factors modulating filament formation by bovine glial fibrillary acidic protein, the intermediate filament component of astroglial cells. Biochemistry, 27, 7038–7045.CrossRefPubMedGoogle Scholar
  4. 4.
    Stromer, M. H., Ritter, M. A., Pang, Y. Y., & Robson R. M. (1987). Effect of cations and temperature on kinetics of desmin assembly. Biochemical Journal, 246, 75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aebi, U., et al. (1988). Unifying principles in intermediate filament (IF) structure and assembly. Protoplasma, 145, 73–81.Google Scholar
  6. 6.
    Angelides, K. J., Smith, K. E., & Takeda M. (1989). Assembly and exchange of intermediate filament proteins of neurons: Neurofilaments are dynamic structures. The Journal of Cell Biology, 108, 1495–1506.CrossRefPubMedGoogle Scholar
  7. 7.
    Rafik, M. E., et al. (2006). In vivo formation steps of the hard α-keratin intermediate filament along a hair follicle: Evidence for structural polymorphism. Journal of Structural Biology, 154(1), 79–88.CrossRefPubMedGoogle Scholar
  8. 8.
    Bornschlögl, T., et al. (2016). Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber. Proceedings of the National Academy of Sciences, 113(21), 5940–5945.CrossRefGoogle Scholar
  9. 9.
    Popescu, C., & Höcker, H. (2009). Chapter 4 cytomechanics of hair: Basics of the mechanical stability. In W. J. Kwang (Ed.), International review of cell and molecular biology (pp. 137–156). Academic Press.Google Scholar
  10. 10.
    Snir, Y., & Kamien, R. D. (2015). Entropically driven helix formation. Science, 307, 1067.CrossRefGoogle Scholar
  11. 11.
    Maritan, A., et al. (2000). Nature, 406, 287–290.CrossRefPubMedGoogle Scholar
  12. 12.
    Crick, F. H. C. (1952). Is α-keratin a coiled coil? Nature, 170, 882–883.CrossRefPubMedGoogle Scholar
  13. 13.
    Crick, F. H. C., & Kendrew, J. C. (1957). X-ray analysis and protein structure. Advances in Protein Chemistry, 12, 133–214.CrossRefGoogle Scholar
  14. 14.
    Steinert, P. M., et al. (1983). Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature, 302, 794–800.CrossRefPubMedGoogle Scholar
  15. 15.
    Steinert, P. M., Torchia, D. R., & Mack, J. W. (1988). In G. E. Rogers et al. (Eds.), The biology of wool and hair. London: Chapman & Hall.CrossRefGoogle Scholar
  16. 16.
    Parry, D. A. D., & Steinert, P. M. (1999). Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Quarterly Reviews of Biophysics, 32(2), 99–187.CrossRefPubMedGoogle Scholar
  17. 17.
    Chernyatina, A. A., Guzenko, D., & Strelkov, S. V. (2015). Intermediate filament structure: The bottom-up approach. Current Opinion in Cell Biology, 32, 65–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Parry, D. A. D., & Fraser, R. D. B. (1985). Intermediate filament structure. 1. Analysis of IF protein sequence data. International Journal of Biological Macromolecules, 7, 203–213.CrossRefGoogle Scholar
  19. 19.
    Ishii, D., et al. (2011). Stepwise characterization of the thermodynamics of trichocyte intermediate filament protein supramolecular assembly. Journal of Molecular Biology, 408(5), 832–838.CrossRefPubMedGoogle Scholar
  20. 20.
    Fraser, R. D., & Parry, D. A. (2005). The three-dimensional structure of trichocyte (hard α-) keratin intermediate filaments: Features of the molecular packing deduced from the sites of induced crosslinks. Journal of Structural Biology, 151(2), 171–181.CrossRefPubMedGoogle Scholar
  21. 21.
    Rafik, M. E., Doucet, J., & Briki, F. (2004). The intermediate filament architecture as determined by X-ray diffraction modeling of hard α-keratin. Biophysical Journal, 86, 3893–3904.CrossRefGoogle Scholar
  22. 22.
    Parry, D. A., et al. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.CrossRefPubMedGoogle Scholar
  23. 23.
    McKinnon, J., & Harland, D. P. (2011). A concerted polymerization-mesophase separation model for formation of trichocyte intermediate filaments and macrofibril templates 1: Relating phase separation to structural development. Journal of Structural Biology, 173(2), 229–240.CrossRefGoogle Scholar
  24. 24.
    Flory, P. J., & Frost, R. S. (1978). Statistical thermodynamics of mixtures of rodlike particles. 3. The most probable distribution. Macromolecules, 11(6), 1126–1133.CrossRefGoogle Scholar
  25. 25.
    Plowman, J. E., Paton, L. N., & Bryson, W. G. (2007). The differential expression of proteins in the cortical cells of wool and hair fibres. Experimental Dermatology, 16(9), 707–714.CrossRefPubMedGoogle Scholar
  26. 26.
    Harland, D. P., et al. (2011). Arrangement of trichokeratin intermediate filaments and matrix in the cortex of merino wool. Journal of Structural Biology, 173(1), 29–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Harland, D. P., et al. (2014). Three-dimensional architecture of macrofibrils in the human scalp hair cortex. Journal of Structural Biology, 185(3), 397–404.CrossRefPubMedGoogle Scholar
  28. 28.
    Kueppers, B., & Hoecker, H. (1990). Cross-reaction of keratin filaments and intermediate filament-associated proteins from various tissues: Assembly of macrofibrils. In Proceedings of the 8th international wool textile research conference 1990. Christchurch: Wool Research Organisation of New Zealand.Google Scholar
  29. 29.
    Huggins, M. L. (1941). Solutions of long chain compounds. The Journal of Chemical Physics, 9, 440.CrossRefGoogle Scholar
  30. 30.
    Flory, P. J. (1941). Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 9, 660–661.CrossRefGoogle Scholar
  31. 31.
    Rosenbaum, S. (1970). Solution of water in polymers: The keratin–water isotherm. Journal of Polymer Science, Part C: Polymer Symposia, 31, 45–55.CrossRefGoogle Scholar
  32. 32.
    Gossett, P., Rizvi, S., & Baker, R. (1984). Symposium: Gelation in food protein systems quantitative analysis of gelation in egg protein systems. Food Technology, 38, 67.Google Scholar
  33. 33.
    Bischof, J. C., & He, X. (2005). Thermal stability of proteins. Annals of New York Academy of Sciences, 1066, 12–33.CrossRefGoogle Scholar
  34. 34.
    Lumry, R., & Eyring, H. (1954). Conformation changes of proteins. Journal of Physical Chemistry, 58, 110–120.CrossRefGoogle Scholar
  35. 35.
    Joly, M. (1965). A physico-chemical approach to the denaturation of proteins (pp. 153–170). London: Academic Press.Google Scholar
  36. 36.
    Eyring, H. (1974). Temperature. In F. H. Johnson, H. Eyring, & B. J. Stoner (Eds.), The theory of rate processes in biology and medicine. New York: Wiley.Google Scholar
  37. 37.
    Cooper, A. (1999). Thermodynamics of protein folding and stability. In G. Allen (Ed.), Protein: A comprehensive treatise (Vol. 2). Stamford: JAI Press Inc.Google Scholar
  38. 38.
    Cooper, A., & McAuley-Hecht, K. E. (1993). Microcalorimetry and the molecular recognition of peptides and proteins. Philosophical Transactions of Royal Society London A, 345, 23–35.CrossRefGoogle Scholar
  39. 39.
    Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophysical Journal, 61, 921.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Istrate, D., et al. (2013). The effect of pH on the thermal stability of fibrous hard alpha-keratins. Polymer Degradation and Stability, 98, 542–549.CrossRefGoogle Scholar
  41. 41.
    Astbury, W.T., & Street, A. (1932). X-ray studies of the structure of hair, wool, and related fibres. I General. Philosophical Transactions of Royal Society London A, 230, 75–101.CrossRefGoogle Scholar
  42. 42.
    Astbury, W. T., & Woods, H. J. (1934). X ray studies of the structure of hair, wool, and related fibres. II. The molecular structure and elastic properties of hair keratin. Philosophical Transactions of Royal Society London A, 232, 333–394.CrossRefGoogle Scholar
  43. 43.
    Bendit, E. G. (1960). A quantitative x-ray diffraction study of the alpha-beta transformation in wool keratin. Textile Research Journal, 30, 547–555.CrossRefGoogle Scholar
  44. 44.
    Kreplak, L., et al. (2002). A new deformation model of hard α-keratin at the nanometer scale: Implications for hard α-keratin intermediate filament mechanical properties. Biophysical Journal, 82, 2265–2274.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kreplak, L., et al. (2004). New aspects of the a-helix to b-sheet transition in stretched hard a-keratin fibres. Biophysical Journal, 87, 640–647.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ciferri, A. (1963). The alpha-beta transformation in keratin. Transaction Faraday Society, 59, 562–569.CrossRefGoogle Scholar
  47. 47.
    Popescu, C., & Gummer, C. (2016). DSC of human hair: A tool for claim support or incorrect data analysis? International Journal of Cosmetic Science, 38, 433–439.CrossRefPubMedGoogle Scholar
  48. 48.
    Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperatures. Chemical Reviews, 43, 219–256.CrossRefGoogle Scholar
  49. 49.
    Feughelman, M., & Note, A. (1989). On the water-impenetrable component of α-keratin Fibres. Textile Research Journal, 59, 739–742.CrossRefGoogle Scholar
  50. 50.
    Eyring, H. (1936). Viscosity, plasticity, and diffusion as examples of absolute reaction rates. The Journal of Chemical Physics, 4, 283–292.CrossRefGoogle Scholar
  51. 51.
    Fox, T. G. (1956). Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bulletin of the American Physical Society, 1, 123.Google Scholar
  52. 52.
    Kalichevsky, M. T., Jaroszkiewics, E. M., & Blanchard, J. M. V. (1992). Glass transition of gluten. 1: Gluten and gluten-sugar mixtures. International Journal of Biological Macromolecules, 14, 257–266.CrossRefPubMedGoogle Scholar
  53. 53.
    Menefee, E., & Yee, G. (1965). Thermally-induced structural changes in wool. Textile Research Journal, 35, 801–812.CrossRefGoogle Scholar
  54. 54.
    Wortmann, F. J., Rigby, B. J., & Phillips, D. G. (1984). Glass transition temperature of wool as a function of regain. Textile Research Journal, 54, 6–8.CrossRefGoogle Scholar
  55. 55.
    Phillips, D. G. (1985). Detecting a glass transition in wool by differential scanning calorimetry. Textile Research Journal, 55, 171–174.CrossRefGoogle Scholar
  56. 56.
    Huson, M. G. (1991). DSC investigation of the physical ageing and deageing of wool. Polymer International, 26, 157–161.CrossRefGoogle Scholar
  57. 57.
    Kure, J. M., et al. (1997). The glass transition of wool: An improved determination using DSC. Textile Research Journal, 67, 18–22.CrossRefGoogle Scholar
  58. 58.
    Wortmann, F. J., et al. (2006). The effect of water on the glass transition of human hair. Biopolymers, 81, 371–375.CrossRefPubMedGoogle Scholar
  59. 59.
    Struik, L. C. E. (1978) Physical aging in amorphous polymers and other materials. Amsterdam/Oxford/New York: Elsevier Scientific Publishing Company.Google Scholar
  60. 60.
    Struik, L. C. E. (1977). Physical aging in plastics and other glassy materials. Polymer Engineering & Science, 17, 165–173.Google Scholar
  61. 61.
    Druhala, M., & Feughelman, M. (1971). Mechanical properties of keratin fibres between −196 °C and 20 °C. Kolloid-Zeitschrift und Zeitschrift für Polymere, 248, 1032–1033.CrossRefGoogle Scholar
  62. 62.
    Druhala, M., & Feughelman, M. (1974). Dynamic mechanical loss in keratin at low temperatures. Colloid Polymer Science, 252, 381–391.CrossRefGoogle Scholar
  63. 63.
    Hedges, J. J. (1926). The absorption of water by colloidal fibres. Transactions of the Faraday Society, 22, 178–193.CrossRefGoogle Scholar
  64. 64.
    Watt, I. C., & D’Arcy, R. L. (1979). Water-vapour adsorption isotherms of wool. Journal of Textile Institute, 70, 298–307.CrossRefGoogle Scholar
  65. 65.
    Wortmann, F. J., Hullmann, A., & Popescu, C. (2007). In IFSCC Magazine (pp. 317–320).Google Scholar
  66. 66.
    Vrentas, J. S., & Vrentas, C. M. (1991). Sorption in glassy polymers. Macromolecules, 24, 2404–2412.CrossRefGoogle Scholar
  67. 67.
    Vrentas, J. S., & Vrentas, C. M. (1994). Evaluation of a sorption equation for polymer-solvent systems. Journal of Applied Polymer Science, 51, 1791–1795.CrossRefGoogle Scholar
  68. 68.
    Vrentas, J. S., & Vrentas, C. M. (1996). Hysteresis effects for sorption in glassy polymers. Macromolecules, 29, 4391–4396.CrossRefGoogle Scholar
  69. 69.
    Pierlot, A. P. (1999). Water in Wool. Textile Research Journal, 69(2), 97–103.CrossRefGoogle Scholar
  70. 70.
    D’Arcy, R. L., & Watt, I. C. (1970). Analysis of sorption isotherms of non-homogeneous sorbents. Transactions of Faraday Society, 66, 1236–1245.CrossRefGoogle Scholar
  71. 71.
    Wortmann, F. J., Augustin, P., & Popescu, C. (2001). Temperature dependence of the water-sorption isotherms of wool. Journal of Applied Polymer Science, 79, 1054–1061.CrossRefGoogle Scholar
  72. 72.
    Jura, G., & Harkins, W. D. (1946). Surfaces of solids. XIV. A unitary thermodynamic theory of the adsorption of vapors on solids and of insoluble films on liquid subphases. Journal of the American Chemical Society, 68, 1941–1952.CrossRefGoogle Scholar
  73. 73.
    Popescu, C., & Wortmann, F. J. (2002). Water vapour sorption and desorption by wool. Wool Technology and Sheep Breeding, 50(1), 52–63.Google Scholar
  74. 74.
    Bull, H. B. (1944). Adsorption of water vapor by proteins. Journal of the American Chemical Society, 66, 1499–1507.CrossRefGoogle Scholar
  75. 75.
    Flory, P. J. (1956). Phase equilibria in solutions of rod-like particles. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 234(1196), 73.CrossRefGoogle Scholar
  76. 76.
    Reese, C. E., & Eyring, H. (1950). Mechanical properties and the structure of hair. Textile Research Journal, 20, 743–753.CrossRefGoogle Scholar
  77. 77.
    Weigmann, H.-D., & Rebenfeld, L. (1966). Reduction of wool with dithiothreitol. Textile Research Journal, 36(2), 202–203.CrossRefGoogle Scholar
  78. 78.
    Feughelman, M. (1965). III-ieme Congres International de la Recherche Textile Lainière. Section 1: p. 413.Google Scholar
  79. 79.
    Nissan, A. H. (1976). H-bond dissociation in hydrogen bond dominated solids. Macromolecules, 9(5), 840–850.CrossRefGoogle Scholar
  80. 80.
    Bull, H. B. (1945). Elasticity of keratin fibers. II. Influence of temperature. Journal of the American Chemical Society, 67, 533–536.CrossRefGoogle Scholar
  81. 81.
    Peters, L., & Speakman, J. B. (1948). The visco-elastic properties of wool fibres. Textile Research Journal, 18, 511–518.CrossRefGoogle Scholar
  82. 82.
    Akkermans, R. L. C., & Warren, P. B. (2004). Multiscale modelling of human hair. Philosophical Transactions of Royal Society London A, 362.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.KAO Germany GmbHDarmstadtGermany

Personalised recommendations