Advertisement

Development of Hair Fibres

  • Duane P. HarlandEmail author
  • Jeffrey E. Plowman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1054)

Abstract

The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.

Keywords

Hair follicle Anagen Hair shaft development Developmental zones Inner root sheath development 

References

  1. 1.
    Alonso, L., & Fuchs, E. (2003). Stem cells of the skin epithelium. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl. 1), 11830–11835.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hardy, M. H. (1992). The secret life of the hair follicle. Trends in Genetics:TIG, 8(2), 55–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Birbeck, M. S. C., & Mercer, E. H. (1957). The electron microscopy of the human hair follicle. Part1. Introduction and the hair cortex. Journal of Biophysical and Biochemical Cytology, 3, 203–214.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Roth, S. I., & Helwig, E. B. (1964). The cytology of the dermal papilla, the bulb, and the root sheaths of the mouse hair. Journal of Ultrastructure Research, 11, 33–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.PubMedCrossRefGoogle Scholar
  6. 6.
    Orwin, D. F., & Woods, J. L. (1982). Number changes and development potential of wool follicle cells in the early stages of fiber differentiation. Journal of Ultrastructure Research, 80(3), 312–322.PubMedCrossRefGoogle Scholar
  7. 7.
    Hashimoto, K., & Shibazaki, S. (1976). Ultrastructural study on differentiation and function of hair. In T. M. Kobori & W. Montagna (Eds.), Biology and disease of hair (pp. 23–57). Baltimore: University Park Press.Google Scholar
  8. 8.
    Nutbrown, M., & Randall, V. A. (1995). Differences between connective tissue-epithelial junctions in human skin and the anagen hair follicle. Journal of Investigative Dermatology, 104(1), 90–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, K. (2001). Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers and Polymers, 2(2), 71–74.CrossRefGoogle Scholar
  10. 10.
    Joubeh, S., et al. (2003). Immunofluorescence analysis of the basement membrane zone components in human anagen hair follicles. Experimental Dermatology, 12(4), 365–370.PubMedCrossRefGoogle Scholar
  11. 11.
    Millard, M. M. (1972). Analysis of surface oxidized wool fiber by x-ray electron spectrometry. Analytical Chemistry, 44(4), 828–829.PubMedCrossRefGoogle Scholar
  12. 12.
    Cotsarelis, G., Sun, T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hynd, P. I., et al. (1986). Mitotic activity in the cells of the wool follicle bulb. Australian Journal of Biological Science, 39, 329–339.CrossRefGoogle Scholar
  14. 14.
    Scobie, D. R. (1992). The short term effects of stress hormones on cell division rate in wool follicles. In Department of Animal Sciences (p. 207). Adelaide: The University of Adelaide.Google Scholar
  15. 15.
    Auber, L. (1951). The anatomy of follicles producing wool-fibres, with special reference to keratinization. Transactions of the Royal Society of Edinburgh, 62, 191–254.CrossRefGoogle Scholar
  16. 16.
    Straile, W. E. (1965). Root sheath-dermal papilla relationships and the control of hair growth. In A. G. Lyne & B. F. Short (Eds.), Biology of the skin and hair growth (pp. 35–57). Sydney: Angus and Robertson.Google Scholar
  17. 17.
    Hynd, P. I. (1994). Follicular determinants of the length and diameter of wool fibres I. Comparison of sheep differing in fibre length/diameter ratio at two levels of nutrition. Australian Journal of Agricultural Research, 45, 1137–1147.CrossRefGoogle Scholar
  18. 18.
    Van Scott, E. J., & Ekel, T. M. (1958). Geometric relationships between the matrix of the hair bulb and its dermal papilla in normal and alopecic scalp. Journal of Investigative Dermatology, 31, 281–287.CrossRefGoogle Scholar
  19. 19.
    Fontaine, S., et al. (2005). Characterization of roughness–friction: Example with nonwovens. Textile Research Journal, 75(12), 826–832.CrossRefGoogle Scholar
  20. 20.
    Silva, T., et al. (2005). Effect of deamidation on stability for the collagen to gelatin transition. Journal of Agricultural and Food Chemistry, 53, 7802–7806.PubMedCrossRefGoogle Scholar
  21. 21.
    Tobin, D. J., et al. (2003). Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: Implications for hair growth control. Journal of Investigative Dermatology, 120(6), 895–904.PubMedCrossRefGoogle Scholar
  22. 22.
    Adelson, D. L., Kelley, B. A., & Nagorcka, B. N. (1992). Increase in dermal papilla cells by proliferation during development of the primary wool follicle. Australian Journal of Agricultural Research, 43, 843–856.CrossRefGoogle Scholar
  23. 23.
    Pierard, G. E., & de la Brassinne, M. (1975). Modulation of dermal cell activity during hair growth in the rat. Journal of Cutaneous Pathology, 2, 35–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Tobin, D. J., et al. (2003). Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: Implications for growth control and hair follicle transformations. Journal of Investigative Dermatology Symposium Proceedings, 8(1), 80–86.CrossRefGoogle Scholar
  25. 25.
    Langbein, L., & Schweizer, J. (2005). Keratins of the human hair follicle. International Review of Cytology, 243, 1–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Langbein, L., et al. (2010). The keratins of the human beard hair medulla: The riddle in the middle. Journal of Investigative Dermatology, 130(1), 55–73.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Legué, E., & Nicolas, J.-F. (2005). Hair follicle renewal: Organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development, 132(18), 4143–4154.PubMedCrossRefGoogle Scholar
  28. 28.
    Rogers, G. E. (2006). Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology, 15(12), 931–949.PubMedCrossRefGoogle Scholar
  29. 29.
    Epstein, W. L., et al. (1967) Cell proliferation and movement in human hair bulbs. In W. Montagna, & R. L. Dobson (Eds.), Advances in biology of skin (Hair growth, Vol. IX) pp. 83–97). New York: Pergamon Press.Google Scholar
  30. 30.
    Yang, H., et al. (2017). Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell, 169(3), 483–496. e13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pripis-Nicolau, L., et al. (2001). Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. Journal of the Science of Food and Agriculture, 81(8), 731–738.CrossRefGoogle Scholar
  32. 32.
    Oro, A. E., & Higgins, K. (2003). Hair cycle regulation of Hedgehog signal reception. Developmental Biology, 255(2), 238–248.PubMedCrossRefGoogle Scholar
  33. 33.
    Gambardella, L., et al. (2000). Pattern of expression of the transcription factor Krox-20 in mouse hair follicle. Mechanisms of Development, 96(2), 215–218.PubMedCrossRefGoogle Scholar
  34. 34.
    Jamora, C., et al. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 422(6929), 317–322.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kaufman, C. K., et al. (2003). GATA-3: An unexpected regulator of cell lineage determination in skin. Genes and Development, 17(17), 2108–2122.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rezza, A., Wang, Z., Sennett, R., Heitman, N., Mok, K. W., Clavel, C., Ma’ayan, A., & Rendl, M. (2016). Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles. Cell Reports, 14(12), 3001–3018.  https://doi.org/10.1016/j.celrep.2016.02.078 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Oliver, R. F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. Journal of Embryology and Experimental Morphology, 15, 331–347.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Reynolds, A. J., & Jahoda, C. A. (1996). Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development, 122(10), 3085–3094.PubMedGoogle Scholar
  39. 39.
    Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. BioEssays, 27(3), 247–261.PubMedCrossRefGoogle Scholar
  40. 40.
    Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science, 119(3), 391–393.CrossRefPubMedGoogle Scholar
  41. 41.
    Driskell, R. R., et al. (2011). Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 124(8), 1179–1182.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wildman, A. B. (1954). The microscopy of animal textiles fibres. Leeds: Wool Industries Research Association.Google Scholar
  43. 43.
    Priestley, G. C. (1967). Histological studies of the skin follicle types of the rat with special reference to the structure of the Huxley layer. Journal of Anatomy, 101, 491–504.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Durward, A., & Rudall, K. M. (1955). The axial symmetry of animal hairs. In Proceedings of the 1st International wool textile conference.Google Scholar
  45. 45.
    Priestley, G. C., & Rudall, K. M. (1965). Modifications in the huxley layer associated with changes in fibre diameter and output. In A. G. Lyne & B. F. Short (Eds.), Biology of the skin and hair growth (pp. 165–182). Sydney: Angus and Robertson.Google Scholar
  46. 46.
    Kassenbeck, P. (1981). Morphology and fine structure of hair. In E. E. Orfanos, W. Montagna, & G. Stuttgen (Eds.), Hair research, status and future aspects (pp. 52–64). Berlin: Springer.CrossRefGoogle Scholar
  47. 47.
    Hess, W. M., et al. (1990). Human hair morphology: A scanning electron microscopy study on a male caucasoid and a computerized classification of regional differences. Scanning Microscopy, 4(2), 375–386.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Jahoda, C. A. B. (2003). Cell movement in the hair follicle dermis – More than a two-way street? Journal of Investigative Dermatology, 121(6), ix–xi.PubMedCrossRefGoogle Scholar
  49. 49.
    Ohyama, M., et al. (2010). The mesenchymal component of hair follicle neogenesis: Background, methods and molecular characterization. Experimental Dermatology, 19(2), 89–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Orwin, D. F. G., & Thomson, R. W. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (4. Further membrane differentiations ). Journal of Ultrastructure Research, 45(1), 41–49.PubMedCrossRefGoogle Scholar
  51. 51.
    Morioka, K. (2005). Hair follicle, differentiation under the electron microscope – An atlas (p. 152). Tokyo: Springer.Google Scholar
  52. 52.
    Orwin, D. F. G., Thomson, R. W., & Flower, N. E. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle. (1. Gap Junctions). Journal of Ultrastructure Research, 45(1), 1–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Carlsen, R. A. (1974). Human fetal hair follicles: The mesenchymal component. Journal of Investigative Dermatology, 63(2), 206–211.PubMedCrossRefGoogle Scholar
  54. 54.
    Iguchi, M., et al. (2003). Communication network in the follicular papilla and connective tissue sheath through gap junctions in human hair follicles. Experimental Dermatology, 12(3), 283–288.PubMedCrossRefGoogle Scholar
  55. 55.
    Nanba, D., Nakanishi, Y., & Hieda, Y. (2003). Establishment of cadherin-based intercellular junctions in the dermal papilla of the developing hair follicle. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 270A(2), 97–102.CrossRefGoogle Scholar
  56. 56.
    Orwin, D. F. G. (1970). A polysaccharide-containing cell coat on keratinizing cells of the Romney wool follicle. Australian Journal of Biological Science, 23, 623–635.CrossRefGoogle Scholar
  57. 57.
    Elliott, K., Stephenson, T. J., & Messenger, A. G. (1999). Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: Implications for the control of hair folicle siize and androgen responses. Journal of Investigative Dermatology, 113, 873–877.PubMedCrossRefGoogle Scholar
  58. 58.
    Orwin, D. F. G. (1976). Acid phosphatase distribution in the wool follicle. I. Cortex and fiber cuticle. Journal of Ultrastructure Research, 55, 312–324.PubMedCrossRefGoogle Scholar
  59. 59.
    Chase, H. B. (1958). The behavior of pigment cells and epithelial cells in the hair follicle. In W. E. Montagna & R. A. Ellis (Eds.), The biology of hair growth (pp. 229–237). New York: Academic Press.CrossRefGoogle Scholar
  60. 60.
    Slominski, A., et al. (2005). Hair follicle pigmentation. Journal of Investigative Dermatology, 124(1), 13–21.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Forrest, J. W., Fleet, M. R., & Rogers, G. E. (1985). Characterization of melanocytes in wool-bearing skin of Merino sheep. Australian Journal of Biological Science, 38, 245–257.CrossRefGoogle Scholar
  62. 62.
    Snell, R. S. (1972). An electron microscopic study of melanin in the hair and hair follicles. Journal of Investigative Dermatology, 59, 144–154.PubMedCrossRefGoogle Scholar
  63. 63.
    Jimbow, K., et al. (1971). Ultrastructural and cytochemical studies of melanogenesis in melanocytes of normal human hair matrix. Journal of Electron Microscopy, 20, 87–92.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Raposo, G., & Marks, M. S. (2007). Melanosomes – Dark organelles enlighten endosomal membrane transport. Nature Reviews of Molecular Cell Biology, 8(10), 786–797.PubMedCrossRefGoogle Scholar
  65. 65.
    Jimbow, K., et al. (2000). Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis. Pigment Cell Research, 13(4), 222–229.PubMedCrossRefGoogle Scholar
  66. 66.
    Slominski, A., & Paus, R. (1993). Melanogenesis is coupled to murine anagen: Toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. Journal of Investigative Dermatology, 101(S1), 90S–97S.PubMedCrossRefGoogle Scholar
  67. 67.
    Dubucq, M., et al. (1981). Enzymoimmunoassay of the main core protein (p28) of mouse mammary tumour virus (MMTV). European Journal of Cancer (1965), 17(1), 81–87.CrossRefGoogle Scholar
  68. 68.
    Enshell-Seijffers, D., et al. (2010). b-Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Developmental Cell, 18(4), 633–642.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vancoillie, G., et al. (2000). Kinesin and kinectin can associate with the melanosomal surface and form a link with microtubules in normal human melanocytes. Journal of Investigative Dermatology, 114(3), 421–429.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Den Bossche, K., Naeyaert, J.-M., & Lambert, J. (2006). The quest for the mechanism of melanin transfer. Traffic, 7(7), 769–778.CrossRefGoogle Scholar
  71. 71.
    Nordlund, J. J. (2007). The melanocyte and the epidermal melanin unit: An expanded concept. Dermatologic Clinics, 25(3), 271–281.PubMedCrossRefGoogle Scholar
  72. 72.
    Plonka, P. M. (2009). Electron paramagnetic resonance as a unique tool for skin and hair research. Experimental Dermatology, 18, 472–484.PubMedCrossRefGoogle Scholar
  73. 73.
    Straile, W. E. (1964). A comparison of x-irradiated melanocytes in the hair follicles and epidermis of black and dilute-black Dutch rabbits. Journal of Experimental Zoology, 155, 325–342.PubMedCrossRefGoogle Scholar
  74. 74.
    Straile, W. E. (1964). A study of the hair follicle and its melanocytes. Developmental Biology, 10, 45–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Downes, A. M., & Lyne, A. G. (1959). Measurement of the rate of growth of wool using cystine labelled with sulphur-35. Nature, 184, 1834–1885.CrossRefGoogle Scholar
  76. 76.
    Daly, R. A., & Carter, H. B. (1956). Fleece growth of young Lincoln, Corriedale, Polwarth and fine Merino maiden ewes grazed on an unimproved paspalum pasture. Australian Journal of Agricultural Research, 7(1), 76–83.CrossRefGoogle Scholar
  77. 77.
    Daly, R. A., & Carter, H. B. (1955). The fleece growth of young Lincoln, Corriedale, Polwarth, and fine Merino maiden ewes under housed conditions and unrestricted and progressively restricted feeding on a standard diet. Australian Journal of Agricultural Research, 6, 476–513.CrossRefGoogle Scholar
  78. 78.
    Chapman, R. E., Downes, A. M., & Wilson, P. A. (1980). Migration and keratinization of cells in wool follicles. Australian Journal of Biological Science, 33, 587–603.CrossRefGoogle Scholar
  79. 79.
    Roth, S. I., & Helwig, E. B. (1964). The cytology of the cuticle of the cortex, the cortex, and the medulla of the mouse hair. Journal of Ultrastructure Research, 11, 52–67.PubMedCrossRefGoogle Scholar
  80. 80.
    Harland, D. P., et al. Intrinsic curvature in merino wool. In Prep. Target, in preparation (Sumitted 9 Feb 2017).Google Scholar
  81. 81.
    Morioka, K., Matsuzaki, T., & Takata, K. (2006). Localization of myosin and actin in the pelage and whisker hair follicles of rat. Acta Histochemica et Cytochemica, 39(4), 113–123.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Orwin, D. F. G. (1969). New ultrastructural features in the wool follicle. Nature, 223, 401–403.CrossRefGoogle Scholar
  83. 83.
    Chapman, R. E. (1971). Cell migration in wool follicles of sheep. Journal of Cell Science, 9(3), 791–803.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Orwin, D. F. G., Thomson, R. W., & Flower, N. E. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (2. desmosomes). Ultrastructure Research, 45, 15–29.CrossRefGoogle Scholar
  85. 85.
    Candi, E., Schmidt, R., & Melino, G. (2005). The cornified envelope: A model of cell death in the skin. Nature Reviews of Molecular Cell Biology, 6(4), 328–340.PubMedCrossRefGoogle Scholar
  86. 86.
    Fuchs, E., & Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nature Reviews Genetics, 3(3), 199–209.PubMedCrossRefGoogle Scholar
  87. 87.
    McKinnon, A. J., Harland, D. P., & Woods, J. L. (2016). Relating self-assembly to protein expression in wool cortical cells. Journal of Textile Engineering, 62(6), 123–128.CrossRefGoogle Scholar
  88. 88.
    Matsunaga, R., et al. (2013). Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. Journal of Structural Biology, 183(3), 484–494.PubMedCrossRefGoogle Scholar
  89. 89.
    Fraser, R. D. B., Rogers, G. E., & Parry, D. A. D. (2003). Nucleation and growth of macrofibrils in trichocyte (hard-α) keratins. Journal of Structural Biology, 143, 85–93.CrossRefGoogle Scholar
  90. 90.
    Chapman, R. E., & Gemmell, R. T. (1971). Stages in the formation and keratinization of the cortex of the wool fiber. Journal of Ultrastructure Research, 36(3–4), 342–354.PubMedCrossRefGoogle Scholar
  91. 91.
    Plowman, J. E., et al. (2015). The proteomics of wool fibre morphogenesis. Journal of Structural Biology, 191(3), 341–351.PubMedCrossRefGoogle Scholar
  92. 92.
    Yu, Z., et al. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation, 77(3), 307–316.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    McKinnon, J., & Harland, D. P. (2011). A concerted polymerization-mesophase separation model for formation of trichocyte intermediate filaments and macrofibril templates 1: Relating phase separation to structural development. Journal of Structural Biology, 173(2), 229–240.CrossRefGoogle Scholar
  94. 94.
    Woods, J. L., & Orwin, D. F. (1982). The cytology of cuticle scale pattern formation in the wool follicle. Journal of Ultrastructure Research, 80(2), 230–242.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhao, B. S., Roundtree, I. A., & He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews. Molecular Cell Biology, 18(1), 31–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Lemasters, J. J., et al. (2017). Compartmentation of mitochondrial metabolism in hair follicles: A ring of fire. Journal of Investigative Dermatology, 137, 1434–1444.PubMedCrossRefGoogle Scholar
  97. 97.
    Jones, L., Harland, D., Jarrold, B., Connolly, J., & Davis, M. (2018). The walking dead: Sequential nuclear and organelle destruction during hair development. The Brititsh Journal of Dermatology. Accepted Author Manuscript.  https://doi.org/10.1111/bjd.16148
  98. 98.
    Forslind, B., & Swanbeck, G. (1966). Keratin formation in the hair follicle I. An ultrastructural investigation. Experimental Cell Research, 43, 191–209.PubMedCrossRefGoogle Scholar
  99. 99.
    Yu, Z., et al. (2011). Annotations of sheep keratin intermediate filament genes and their patterns of expression. Experimental Dermatology, 20(7), 582–588.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rogers, M. A., et al. (2006). Human hair keratin-associated proteins (KAPs). International Review of Cytology, 251, 209–263.CrossRefPubMedGoogle Scholar
  101. 101.
    Rogers, M. A., et al. (2007). Characterization of human KAP24.1, a cuticular hair keratin-associated protein with unusual amino-acid composition and repeat structure. Journal of Investigative Dermatology, 127(5), 1197–1204.PubMedCrossRefGoogle Scholar
  102. 102.
    Powell, B. C., Nesci, A., & Rogers, G. E. (1991). Regulation of keratin gene expression in hair follicle differentiation. Annals of the New York Academy of Sciences, 642, 1–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Mercer, E. H. (1949). Some experiments on the orientation and hardening of keratin in the hair follicle. Biochimica et Biophysica Acta, 3, 161–169.CrossRefGoogle Scholar
  104. 104.
    Mercer, E. H. (1961). Keratin and keratinization (1st ed., Vol. 12, International series of monographs on pure and applied biology, p. 316) Oxford: Pergamon Press.Google Scholar
  105. 105.
    Rafik, M. E., et al. (2006). In vivo formation steps of the hard α-keratin intermediate filament along a hair follicle: Evidence for structural polymorphism. Journal of Structural Biology, 154(1), 79–88.PubMedCrossRefGoogle Scholar
  106. 106.
    Bornschlögl, T., et al. (2016). Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber. Proceedings of the National Academy of Sciences, 113(21), 5940–5945.CrossRefGoogle Scholar
  107. 107.
    Rogers, G. E. (1959). Electron microscopy of wool. Journal of Ultrastructure Research, 2(3), 309–330.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Rogers, G. E. (1964). Structural and biochemical features of the hair follicle. In W. Montapna & W. C. Lobitz (Eds.), The epidermis (pp. 179–236). New York: Academic Press.CrossRefGoogle Scholar
  109. 109.
    Orwin, D. F. G. (1976). Acid phosphatase distribution in the wool follicle. III. Fate of organelles in keratinized cells. Journal of Ultrastructure Research, 55, 335–342.PubMedCrossRefGoogle Scholar
  110. 110.
    Thibaut, S., et al. (2008). Transglutaminase-3 enzyme: A putative actor in human hair shaft scaffolding? Journal of Investigative Dermatology, 129(2), 449–459.PubMedCrossRefGoogle Scholar
  111. 111.
    Caldwell, J. P., et al. (2005). The three-dimensional arrangement of intermediate filaments in Romney wool cortical cells. Journal of Structural Biology, 151(3), 298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Burdett, I. A. A. (1998). Aspects of the structure and assembly of desmosomes. Micron, 29(4), 309–328.PubMedCrossRefGoogle Scholar
  113. 113.
    Garrod, D. R., et al. (1999). Desmosomal adhesion. Advances in Molecular and Cell Biology, 28, 165–202.CrossRefGoogle Scholar
  114. 114.
    Thomason, H. A., et al. (2010). Desmosomes: Adhesive strength and signalling in health and disease. Biochemical Journal, 429(3), 419–433.PubMedCrossRefGoogle Scholar
  115. 115.
    Mils, V., et al. (1992). The expression of desmosomal and corneodesmosomal antigens shows specific variations during the terminal differentiation of epidermis and hair follicle epithelia. Journal of Histochemistry and Cytochemistry, 40(9), 1329–1337.PubMedCrossRefGoogle Scholar
  116. 116.
    Kurzen, H., et al. (1998). Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation, 63, 295–304.PubMedCrossRefGoogle Scholar
  117. 117.
    Bazzi, H., et al. (2006). Desmoglein 4 is expressed in highly differentiated keratinocytes and trichocytes in human epidermis and hair follicle. Differentiation, 74(2–3), 129–140.PubMedCrossRefGoogle Scholar
  118. 118.
    Runswick, S. K., et al. (2001). Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biology, 3, 823–830.PubMedCrossRefGoogle Scholar
  119. 119.
    Tsvetkov, E. A. (2001). Gap junctions: Structure, functions, and regulation. Journal of Evolutionary Biochemistry and Physiology, 37(5), 457–468.CrossRefGoogle Scholar
  120. 120.
    Arita, K., et al. (2004). Gap junction development in the human fetal hair follicle and bulge region. British Journal of Dermatology, 150(3), 429–434.PubMedCrossRefGoogle Scholar
  121. 121.
    Kam, E., & Hodgins, M. B. (1992). Communication compartments in hair follicles and their implication in differentiative control. Development, 114, 389–393.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Downes, A. M., Lyne, A. G., & Clarke, W. H. (1962). Radioautographic studies of the incorporation of [35S]cystine into wool. Australian Journal of Biological Science, 15, 713–719.CrossRefGoogle Scholar
  123. 123.
    Brandner, J. M., et al. (2003). Expression and localization of tight junction-associated proteins in human hair follicles. Archives of Dermatological Research, 295(5), 211–221.PubMedCrossRefGoogle Scholar
  124. 124.
    Orwin, D. F. G., Thomson, R. W., & Flower, N. E. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (3. Tight junctions). Journal of Ultrastructure Research, 45, 30–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Orwin, D. F. G., & Thomson, R. W. (1972). An ultrastructural study of the membranes of keratinizing wool follicle cells. Journal of Cell Science, 11(1), 205–219.PubMedGoogle Scholar
  126. 126.
    Nogues, B., et al. (1988). New advances in the internal lipid composition of wool. Textile Research Journal, 58, 338–342.CrossRefGoogle Scholar
  127. 127.
    Robbins, C. R. (2009). The cell membrane complex: Three related but different cellular cohesion components of mammalian hair fibers. Journal of the Society of Cosmetic Chemistry, 60(4), 437–465.Google Scholar
  128. 128.
    Bryson, W. G., et al. (1995). Characterisation of proteins obtained from papain/dithiothreitol digestion of merino and romney wools. In Proceedings of the 9th International Wool textile research conference. Biella, Italy.Google Scholar
  129. 129.
    Montagna, W., & Parakkal, P. F. (1974). The structure and function of skin (3rd ed.). New York: Academic Press.Google Scholar
  130. 130.
    Downes, A. M., et al. (1966). Proliferative cycle and fate of cell nuclei in wool follicles. Nature, 212, 477–479.CrossRefGoogle Scholar
  131. 131.
    Swift, J. A. (1977). The histology of keratin fibers. In R. S. Asquith (Ed.), Chemistry of natural protein fibers (pp. 81–146). London: Wiley.CrossRefGoogle Scholar
  132. 132.
    Woods, J. L., & Orwin, D. F. G. (1980). Studies on the surface layers of the wool fibre cuticle. In D. A. D. Parry & L. K. Creamer (Eds.), Fibrous proteins: Scientific, industrial and medical aspects (pp. 141–149). London: Academic Press.Google Scholar
  133. 133.
    Fischer, H., et al. (2011). Essential role of the keratinocyte-specific endonuclease DNase1L2 in the removal of nuclear DNA from hair and nails. Journal of Investigative Dermatology, 131(6), 1208–1215.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gilbert, M. T. P., et al. (2007). Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science, 317(5846), 1927–1930.PubMedCrossRefGoogle Scholar
  135. 135.
    Lemasters, J. J., et al. (2017). Compartmentation of mitochondrial and oxidative metabolism in growing hair follicles: A ring of fire. Journal of Investigative Dermatology, 137(7), 1434–1444.PubMedCrossRefGoogle Scholar
  136. 136.
    Orwin, D. F., & Thomson, R. W. (1972). The distribution of coated vesicles in keratinizing cells of the wool follicle. Australian Journal of Biological Science, 25(3), 573–583.CrossRefGoogle Scholar
  137. 137.
    Yang, J., et al. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRefGoogle Scholar
  138. 138.
    McGowan, K. M., & Coulombe, P. A. (2000). Keratin 17 expression in the hard epithelial context of the hair and nail, and its relevance for the Pachyonychia Congenita phenotype. Journal of Investigative Dermatology, 114(6), 1101–1107.PubMedCrossRefGoogle Scholar
  139. 139.
    Hojiro, O. (1972). Fine structure of the mouse hair follicle. Journal of Electron Microscopy, 21, 127–138.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Parakkal, P. F., & Matoltsy, A. G. (1964). A study of the differentiation products of the hair follicle cells with the electron microscope. Journal of Investigative Dermatology, 43, 23–34.CrossRefGoogle Scholar
  141. 141.
    Rothnagel, J. A., & Rogers, G. E. (1986). Trichohyalin, and intermediate filament-associated protein of the hair follicle. Journal of Cell Biology, 102, 1419–1429.PubMedCrossRefGoogle Scholar
  142. 142.
    Rogers, G., et al. (1997). Peptidylarginine deiminase of the hair follicle: Characterization, localization, and function in keratinizing tissues. Journal of Investigative Dermatology, 108(5), 700–707.PubMedCrossRefGoogle Scholar
  143. 143.
    Fietz, M. J., et al. (1993). Analysis of the sheep trichohyalin gene: Potential structural and calcium-binding roles of trichohyalin in the hair follicle. Journal of Cell Biology, 121(4), 855–865.PubMedCrossRefGoogle Scholar
  144. 144.
    Hashimoto, K. (1988). The structure of human hair. Clinics in Dermatology, 6(4), 7–21.PubMedCrossRefGoogle Scholar
  145. 145.
    Ito, M., & Hashimoto, K. (1982). Trichohyaline granules in hair cortex. Journal of Investigative Dermatology, 79, 392–398.PubMedCrossRefGoogle Scholar
  146. 146.
    Harding, H. W., & Rogers, G. E. (1971). (γ-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry, 10, 624–630.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Harding, H. W. J., & Rogers, G. E. (1972). The occurrence of the (γ-glutamyl)lysine cross-link in the medulla of hair and quill. Biochimica et Biophysica Acta, 257(1), 37–39.PubMedCrossRefGoogle Scholar
  148. 148.
    Rogers, G. E. (1989). Special biochemical features of the hair follicle. In G. E. Rogers, P. J. Reis, K. A. Ward, & R. C. Marshall (Eds.), The biology of wool and hair (pp. 69–85). London/New York: Chapman and Hall.CrossRefGoogle Scholar
  149. 149.
    Cheng, T., van Vlijmen-Willems, I. M. J. J., Hitomi, K., Pasch, M. C., van Erp, P. E. J., Schalkwijk, J., & Zeeuwen, P. L. J. M. (2008). Colocalization of cystatin M/E and its target proteases suggests a role in terminal differentiation of human hair follicle and nail. Journal of Investigative Dermatology, 129(5), 1232–1242.PubMedCrossRefGoogle Scholar
  150. 150.
    Brunner, H., & Coman, B. J. (1974). The identification of mammalian hair. (1st ed.p. 176). Melbourne: Inkata Press.Google Scholar
  151. 151.
    Harding, H. W. J., & Rogers, G. E. (1976). Isolation of peptides containing citrulline and the cross-link (γ-glutamyl)lysine, from hair medulla protein. Biochimica et Biophysica Acta, 427, 315–324.PubMedCrossRefGoogle Scholar
  152. 152.
    Birbeck, M. S. C., & Mercer, E. H. (1957). The electron microscopy of the human hair follicle. Part 2. The hair cuticle. Journal of Biophysical and Biochemical Cytology, 3, 215–221.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Happey, F., & Johnson, A. G. (1962). Some electron microscope observations on hardening in the human hair follicle. Journal of Ultrastructure Research, 7, 316–327.PubMedCrossRefGoogle Scholar
  154. 154.
    Gardel, M. L., et al. (2010). Mechanical integration of actin and adhesion dynamics in cell migration. Annual Review of Cell and Developmental Biology, 26(1), 315–333.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kassenbeck, P. (1959). The kinetics of the keratinization process and the formation of the keratinized fibre. Bulletin de l’institut Textile de france, 83, 26–40.Google Scholar
  156. 156.
    Bradbury, J. H., & Rogers, G. E. (1963). The theory of shrinkproofing of wool. Part IV. Electron and light microscopy of polyglycine on the fibers. Textile Research Journal, 33, 452–458.CrossRefGoogle Scholar
  157. 157.
    Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(28), 19874–19884.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Langbein, L., et al. (2001). The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. Journal of Biological Chemistry, 276(37), 35123–35132.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Gemmell, R. T., & Chapman, R. E. (1971). Formation and breakdown of the inner root sheath and features of the pilary canal epithelium in the wool follicle. Journal of Ultrastructure Research, 36, 355–366.PubMedCrossRefGoogle Scholar
  160. 160.
    Bringans, S. D., et al. (2007). Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology, 16(11), 951–960.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Swift, J. A., & Bews, B. (1974). The chemistry of human hair cuticle-II: The isolation and amino acid analysis of the cell membranes and A-layer. Journal of the Society of Cosmetic Chemistry, 25, 355–366.Google Scholar
  162. 162.
    Langbein, L., et al. (2007). Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair: Completion of the human hair keratin catalogue. Journal of Investigative Dermatology, 127, 1532–1535.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Jones, L. N., et al. (2010). Location of keratin-associated proteins in developing fiber cuticle cells using immunoelectron microscopy. International Journal of Trichology, 2(2), 89–95.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Swift, J. A., & Holmes, A. W. (1965). Degradation of human hair by papain. Part III: Some electron microscope observations. Textile Research Journal, 35, 1014–1019.CrossRefGoogle Scholar
  165. 165.
    Rogers, G. E. (1959). Electron microscope studies of hair and wool. Annals of the New York Academy of Sciences, 83, 378–399.PubMedCrossRefGoogle Scholar
  166. 166.
    Birbeck, M. S. C., & Mercer, E. H. (1957). The electron microscopy of the human hair follicle Part 3. The inner root sheath and trichohyaline. Journal of Biophysical and Biochemical Cytology, 3, 223–230.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Jones, L. N., & Rivett, D. E. (1997). The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron, 28(6), 469–485.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Jones, L. N., Horr, T. J., & Kaplin, I. J. (1994). Formation of surface membranes in developing mammalian hair fibres. Micron, 25(6), 589–595.PubMedCrossRefGoogle Scholar
  169. 169.
    Jones, L. N., et al. (1996). Hairs from patitents with maple syrup urine disease show a structural defect in the fiber cuticle. Journal of Investigative Dermatology, 106(3), 461–464.PubMedCrossRefGoogle Scholar
  170. 170.
    Priestly, G. C. (1967). Seasonal changes in the inner root sheath of the primary follicles in Herdwick sheep. Journal of Agricultural Science, 69, 9–12.CrossRefGoogle Scholar
  171. 171.
    Donetti, E., et al. (2004). Desmocollin 1 expression and desmosomal remodeling during terminal differentiation of human anagen hair follicle: An electron microscopic study. Experimental Dermatology, 13(5), 289–297.PubMedCrossRefGoogle Scholar
  172. 172.
    Tamada, Y., et al. (1995). Expression of transglutaminase 1 in human anagen hair follicles. Acta Dermatovenerologica, 75, 190–192.Google Scholar
  173. 173.
    Langbein, L., et al. (2002). A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized Huxley cells (flugelzellen) of the human hair follicle. Journal of Investigative Dermatology, 118(5), 789–799.PubMedCrossRefGoogle Scholar
  174. 174.
    Langbein, L., et al. (2003). K6irs1, K6irs2, K6irs3, and K6irs4 represent the inner-root-sheath-specific type II epithelial keratins of the human hair follicle. Journal of Investigative Dermatology, 120(4), 512–522.PubMedCrossRefGoogle Scholar
  175. 175.
    Orwin, D. F. G. (1974). Acid phosphatase in keratinising wool follicle cells. In The 8th International Congress of electron microscopy.Google Scholar
  176. 176.
    Orwin, D. F. G. (1976). Acid phosphatase distribution in the wool follicle. II. Henle’s layer and outer root sheath. Journal of Ultrastructure Research, 55, 325–334.PubMedCrossRefGoogle Scholar
  177. 177.
    Shimomura, Y., et al. (2008). Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nature Genetics, 40(3), 335–339.PubMedCrossRefGoogle Scholar
  178. 178.
    Runkel, F., et al. (2006). Morphologic and molecular characterization of two novel Krt71 (Krt2-6g) mutations: Krt71 rco12 and Krt71 rco13. Mammalian Genome, 17, 1172–1182.PubMedCrossRefGoogle Scholar
  179. 179.
    Mirmirani, P., Uno, H., & Price, V. H. (2011). Abnormal inner root sheath of the hair follicle in the loose anagen hair syndrome: An ultrastructural study. Journal of the American Academy of Dermatology, 64(1), 129–134.PubMedCrossRefGoogle Scholar
  180. 180.
    Miyai, M., et al. (2010). c-Maf and MafB transcription factors are differentially expressed in Huxley’s and Henle’s layers of the inner root sheath of the hair follicle and regulate cuticle formation. Journal of Dermatological Science, 57(3), 178–182.PubMedCrossRefGoogle Scholar
  181. 181.
    Hess, W. M., et al. (1990). A scanning electron microscopy study of laser-cut hair. Proceedings of the International Congress for Electron Microscopy, 12, 730–731.Google Scholar
  182. 182.
    Orwin, D. F. (1971). Cell differentiation in the lower outer sheath of the Romney wool follicle: A companion cell layer. Australian Journal of Biological Science, 24(5), 989–999.CrossRefGoogle Scholar
  183. 183.
    Ito, M. (1986). The innermost cell layer of the outer root sheath in anagen hair follicle: Light and electron microscopic study. Archives of Dermatological Research, 279, 112–119.PubMedCrossRefGoogle Scholar
  184. 184.
    Winter, H., et al. (1998). A novel human type 2 cytokeratin, K6hf, specifically expressed in the companion layer of the hair follicle. Journal of Investigative Dermatology, 111(6), 955–962.PubMedCrossRefGoogle Scholar
  185. 185.
    Ito, M. (1988). Electron microscopic study on cell differentiation in anagen hair follicles in mice. Journal of Investigative Dermatology, 90, 65–72.PubMedCrossRefGoogle Scholar
  186. 186.
    Montagna, W. (1962). The structure and function of skin (2nd ed.). New York: Academic Press.Google Scholar
  187. 187.
    Ro, I. B., & Dawson, T. L. (2005). The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. Journal of Investigative Dermatology Symposium Proceedings, 10(3), 194–197.CrossRefGoogle Scholar
  188. 188.
    Robbins, C. R. (1994). Chemical and physical behavior of human hair (3rd ed.p. 330). New York: Springer.CrossRefGoogle Scholar
  189. 189.
    Kaiser, L., et al. (2003). The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. Journal of Biological Chemistry, 278(39), 37730–37735.PubMedCrossRefGoogle Scholar
  190. 190.
    Orwin, D. F. G., & Woods, J. L. (1985). Cellular debris in the grease of wool fibres. Textile Research Journal, 55, 84–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.AgResearch Ltd.LincolnNew Zealand

Personalised recommendations