Advertisement

A Least Squares Method for Detecting Multiple Change Points in a Univariate Time Series

  • Kyu S. Hahn
  • Won Son
  • Hyungwon Choi
  • Johan Lim
Conference paper
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

Detecting and interpreting influential turning points in time series data is a routine research question in many disciplines of applied social science research. Here we propose a method for identifying important turning points in a univariate time series. The most rudimentary methods are inadequate when the researcher lacks preexisting expectations or hypotheses concerning where such turning points ought to exist. Other alternatives are computationally intensive and dependent on strict model assumptions. Our method is fused LASSO regression, a variant of regularized least squares method, providing a convenient alternative for estimation and inference of multiple change points under mild assumptions. We provide two examples to illustrate the method in social science applications. First, we assessed the validity of our method by reanalyzing the Greenback prices data used in (Willard et al. in Am Econ Rev 86:1001–1017, 1996). We next used the method to identify major change points in President Clinton’s approval ratings.

References

  1. Abbott, A. (1997). On the concept of turning point. Comparative Social Research, 16, 85–106.Google Scholar
  2. Arnold, T., & Tibshirani, R. (2016). Efficient implementations of the generalized lasso dual path algorithm. Journal of Computational and Graphical Statistics, 25(1), 1–27.MathSciNetCrossRefGoogle Scholar
  3. Banerjee, A., Lumsdaine, R. L., & Stock, J. H. (1992). Recursive and sequential tests of the unit-root and trend-break hypotheses: Theory and international evidence. Journal of Business & Economic Statistics, 10(3), 271–287.Google Scholar
  4. Burnham, W. D. (1970). Critical elections and the mainsprings of American politics. New York: Norton.Google Scholar
  5. Carlin, B. P., Gelfand, A. E., & Smith, A. F. (1992). Hierarchical Bayesian analysis of changepoint problems. Applied Statistics, 41, 389–405.CrossRefzbMATHGoogle Scholar
  6. Chaffin, W. W., & Talley, W. K. (1989). Diffusion indexes and a statistical test for predicting turning points in business cycles. International Journal of Forecasting, 5(1), 29–36.CrossRefGoogle Scholar
  7. Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86(2), 221–241.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Clubb, J. M., Flanagan, W. H., & Zingale, N. H. (1981). Party Realignment. Beverly Hills: Sage.Google Scholar
  10. Cohen, I. B. (1985). Revolution in Science. Boston: Harvard University Press.Google Scholar
  11. Elder, G. H, Jr. (1985). Perspectives on the life course. In Glen H. Elder, Jr. Ithaca (Eda.), Life course dynamics: Trajectories and transitions (pp. 1968–1980) Cornell University Press.Google Scholar
  12. Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Greene, S. (2001). The role of character assessments in presidential approval. American Politics Research, 29(2), 196–210.MathSciNetCrossRefGoogle Scholar
  14. Gronke, P., & Brehm, J. (2002). History, heterogeneity, and presidential approval: A modified ARCH approach. Electoral Studies, 21(3), 425–452.CrossRefGoogle Scholar
  15. Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. Biometrika, 57, 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Hoefling, H. (2010). A path algorithm for the fused lasso signal approximator. Journal of Computational and Graphical Statistics, 19(4), 984–1006.MathSciNetCrossRefGoogle Scholar
  17. Isaac, L. W., & Griffin, L. J. (1989). Ahistoricism in time-series analyses of historical process: Critique, redirection, and illustrations from US labor history. American Sociological Review, 54, 873–890.CrossRefGoogle Scholar
  18. Jacobson, G. C. (1999). Impeachment politics in the 1998 congressional elections. Political Science Quarterly, 114(1), 31–51.CrossRefGoogle Scholar
  19. Kagay, M. R. (1999). Presidential address: Public opinion and polling during presidential scandal and impeachment. The Public Opinion Quarterly, 63(3), 449–463.CrossRefGoogle Scholar
  20. Key, V. O, Jr. (1955). A theory of critical elections. The Journal of Politics, 17(1), 3–18.MathSciNetCrossRefGoogle Scholar
  21. Kim, S.-J., Koh, K., Boyd, S., & Gorinevsky, D. (2009). \(\ell _1\) trend filtering. SIAM Review, 51(2), 339–360.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. The Annals of Statistics, 28, 1356–1378.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  24. Lai, T. L. (2001). Sequential analysis: Some classical problems and new challenges (with discussion). Statistica Sinica, 11, 303–408.MathSciNetzbMATHGoogle Scholar
  25. Lasser, W. (1985). The supreme court in periods of critical realignment. The Journal of Politics, 47(4), 1174–1187.CrossRefGoogle Scholar
  26. Lawrence, R. G., & Bennett, W. L. (2001). Rethinking media politics and public opinion: Reactions to the Clinton’s Lewinsky scandal. Political Science Quarterly, 116(3), 425–446.CrossRefGoogle Scholar
  27. Lee, T., Won, J-H., Lim, J., & Yoon, S. (2017). Large-scale structured sparsity via parallel fused lasso on multiple GPUs. Journal of Computational and Graphical Statistics.Google Scholar
  28. Leng, C., Lin, Y., & Wahba, G. (2006). A note on the lasso and related procedures in model selection. Statistica Sinica, 16, 1273–1284.MathSciNetzbMATHGoogle Scholar
  29. Levy, J.S. (1989). The diversionary theory of war: A critique. In Manus I. Midlarsky (Ed.), Handbook of war studies (pp. 259-288). Unwin Hyman, Boston.Google Scholar
  30. Li, K., Sharpnack, J., Rinaldo, A., & Tibshirani, R. (2017). Approximate recovery in changepoint problems, from \(\ell _2\) estimation error rates. arXiv:1606.06746v2.
  31. Mammen, E., & van de Geer, S. (1997). Locally adaptive regression splines. The Annals of Statistics, 25(1), 387–413.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Parker, S. L. (1995). Towards an understanding of "rally" effects: Public opinion in the Persian Gulf War. Public Opinion Quarterly, 59(4), 526–546.CrossRefGoogle Scholar
  33. Rinaldo, A. (2009). Properties and refinements of the fused lasso. The Annals of Statistics, 37(5B), 2922–2952.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Russett, B. (1990). Economic decline, electoral pressure, and the initiation of interstate conflict. In Charles S. Gochman & Alan Ned Sabrosky (Eds.), Prisoners of War? Nation-States in the Modern Era (pp. 123–140). Lexington: Lexington Books.Google Scholar
  35. Sampson, R. J., & Laub, J. H. (2005). A life-course view of the development of crime. The Annals of the American Academy of Political and Social Science, 602(1), 12–45.CrossRefGoogle Scholar
  36. Sabato, L. (1991). Feeding frenzy: How attack journalism has transformed American politics. Free Pr.Google Scholar
  37. Siegmund, D. (1986). Boundary crossing probabilities and statistical applications. The Annals of Statistics, 14, 361–404.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Tibshirani, R. (2014). Adaptive piecewise polynomial estimation via trend filtering. The Annals of Statistics, 42(1), 285–323.MathSciNetCrossRefzbMATHGoogle Scholar
  39. Tibshirani, R., & Taylor, J. (2011). The solution path of the generalized lasso. The Annals of Statistics, 39(3), 1335–1371.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58, 267–288.MathSciNetzbMATHGoogle Scholar
  41. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B, 67(1), 91–108.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Willard, K. L., Guinnane, T. W., & Rosen, H. S. (1996). Turning points in the civil war: Views from the greenback market. American Economic Review, 86(4), 1001–1018.Google Scholar
  43. Williams, R. (2000). Political Scandals in the USA. Chicago: Fitzroy Dearborn Publishers.Google Scholar
  44. Western, B., & Kleykamp, M. (2004). A Bayesian change point model for historical time series analysis. Political Analysis, 12(4), 354–374.CrossRefGoogle Scholar
  45. Yang, T., & Kuo, L. (2001). Bayesian binary segmentation procedure for a Poisson process with multiple changepoints. Journal of Computational and Graphical Statistics, 10(4), 772–785.MathSciNetCrossRefGoogle Scholar
  46. Yu, D., Won, J.-H., Lee, T., Lim, J., & Yoon, S. (2015). High-dimensional fused lasso regression using majorizationminimization and parallel processing. Journal of Computational and Graphical Statistics, 24(1), 121–153.MathSciNetCrossRefGoogle Scholar
  47. Zaller, J. R. (1998). Monica Lewinsky’s contribution to political science. PS. Political Science & Politics, 31(2), 182–189.CrossRefGoogle Scholar
  48. Zellner, A., Hong, C., & Min, C. K. (1991). Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques. Journal of Econometrics, 49(1–2), 275–304.CrossRefGoogle Scholar
  49. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418–1429.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kyu S. Hahn
    • 1
  • Won Son
    • 2
  • Hyungwon Choi
    • 3
  • Johan Lim
    • 4
  1. 1.Department of CommunicationSeoul National UniversitySeoulSouth Korea
  2. 2.Bank of KoreaSeoulSouth Korea
  3. 3.Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
  4. 4.Department of StatisticsSeoul National UniversitySeoulSouth Korea

Personalised recommendations