Advertisement

Possible Clinical Use of Big Data: Personal Brain Connectomics

  • Dong Soo Lee
Conference paper
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods.

Notes

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) Grant funded by Korean Government (MOE) (No. 2016R1D1A1A02937497), the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2015M3C7A1028926, No.2017R1A5A1015626 and No. 2017M3C7A1048079).

References

  1. Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–4.CrossRefGoogle Scholar
  2. Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., & Lim, K. O. (2012). Altered resting state complexity in schizophrenia. Neuroimage, 59(3), 2196–207.CrossRefGoogle Scholar
  3. Batson, J., Spielman, D. A., Srivastava, N., & Teng, S. H. (2013). Spectral sparsification of graphs: Theory and algorithms. Communications of the ACM, 56(8), 87–94.CrossRefGoogle Scholar
  4. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–98.CrossRefGoogle Scholar
  5. Choi, H., Kim, Y. K., Kang, H., Lee, H., Im, H. J., Hwang, D. W., et al. (2014). Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: A multiscale network analysis based on persistent homology. Neuroimage, 1(99), 226–36.CrossRefGoogle Scholar
  6. Gao, W., Emaminejad, S., Nyein, H. Y., Challa, S., Chen, K., Peck, A., et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–14.CrossRefGoogle Scholar
  7. Hahm, J., Lee, H., Park, H., Kang, E., Kim, Y. K., Chung, C. K., et al. (2017). Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology. Scientific Reports, 7(7), 41592.CrossRefGoogle Scholar
  8. Im, H.J., Hahm, J., Kang, H., Choi, H., Lee, H., Hwang, do W., Kim, E.E., Chung, J.K., Lee, D.S. (2016). Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis. Scientific Reports, 6:33875.Google Scholar
  9. Kim, H., Hahm, J., Lee, H., Kang, E., Kang, H., & Lee, D. S. (2015). Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connectivity, 5(4), 245–58.CrossRefGoogle Scholar
  10. Kim, E., Kang, H., Lee, H., Lee, H. J., Suh, M. W., Song, J. J., et al. (2014). Morphological brain network assessed using graph theory and network filtration in deaf adults. Hearing Research, 315, 88–98.CrossRefGoogle Scholar
  11. Lee, H., Chung, M.K., Kang, H., Kim, B.N., Lee, D.S. (2011). Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric. Medical Image Computing and Computer-Assisted Intervention, 14(Pt 2), 302–309.Google Scholar
  12. Lee, Y., Nelder, J. A., & Pawitan, Y. (2017a). Generalized linear models with random effects: Unified analysis via H-likelihood. Chapman & Hall/CRC.Google Scholar
  13. Lee, Y., Ronnegard, L., & Noh, M. (2017b). Data analysis using hierarchical generalized linear models with R. CRC Press.Google Scholar
  14. Lee, H., Chung, M. K., Kang, H., & Lee, D. S. (2014). Hole detection in metabolic connectivity of Alzheimer’s disease using kappa-Laplacian. Medical Image Computing and Computer-Assisted Intervention, 17(Pt 3), 297–304.Google Scholar
  15. Lee, D., Ganna, A., Pawitan, Y., & Lee, W. (2016). Nonparametric estimation of the rediscovery rate. Statistics in Medicine, 35(18), 3203–12.MathSciNetCrossRefGoogle Scholar
  16. Lee, H., Kang, H., Chung, M. K., Kim, B. N., & Lee, D. S. (2012). Persistent brain network homology from the perspective of dendrogram. IEEE Transactions on Medical Imaging, 31(12), 2267–77.CrossRefGoogle Scholar
  17. Lee, H., Kang, H., Chung, M. K., Lim, S., Kim, B. N., & Lee, D. S. (2017). Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology. Human Brain Mapping, 38(3), 1387–1402.CrossRefGoogle Scholar
  18. Lee, D., Kang, H., Kim, E., Lee, H., Kim, H., Kim, Y. K., et al. (2015). Optimal likelihood-ratio multiple testing with application to Alzheimer’s disease and questionable dementia. BMC Medical Research Methodology, 30(15), 9.CrossRefGoogle Scholar
  19. Lee, D. S., Kang, H., Kim, H., Park, H., Oh, J. S., Lee, J. S., et al. (2008). Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. European Journal of Nuclear Medicine and Molecular Imaging, 35(9), 1681–91.CrossRefGoogle Scholar
  20. Lee, D., & Lee, Y. (2016). Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model. Journal of Multivariate Analysis, 151, 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Lee, H., Lee, D. S., Kang, H., Kim, B. N., & Chung, M. K. (2011). Sparse brain network recovery under compressed sensing. IEEE Transactions on Medical Imaging, 30(5), 1154–65.CrossRefGoogle Scholar
  22. Lee, D. S., Lee, J. S., Oh, S. H., Kim, S. K., Kim, J. W., Chung, J. K., et al. (2001). Cross-modal plasticity and cochlear implants. Nature, 409(6817), 149–50.CrossRefGoogle Scholar
  23. Lillie, E. O., Patay, B., Diamant, J., Issell, B., Topol, E. J., & Schork, N. J. (2011). The n-of-1 clinical trial: The ultimate strategy for individualizing medicine? Personalized Medicine, 8(2), 161–173.CrossRefGoogle Scholar
  24. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876–8.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Park, M., Do, K., Kim, J., Son, D., Koo, J. H., Park, J., et al. (2015). Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics. Advanced Healthcare Materials, 4(7), 992–7.CrossRefGoogle Scholar
  26. Rehm, H. L., Berg, J. S., Brooks, L. D., Bustamante, C. D., Evans, J. P., Landrum, M. J., et al. (2015). ClinGen-the clinical genome resource. New England Journal of Medicine, 372(23), 2235–42.CrossRefGoogle Scholar
  27. Relling, M. V., & Evans, W. E. (2015). Pharmacogenomics in the clinic. Nature, 526(7573), 343–50.CrossRefGoogle Scholar
  28. Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage, 25(1), 230–42.CrossRefGoogle Scholar
  29. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–69.CrossRefGoogle Scholar
  30. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., & Ringach, D.L. (2008). Topological analysis of population activity in visual cortex. Journal of Vision, 8(8), 11.1–18.Google Scholar
  31. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–3.CrossRefGoogle Scholar
  32. Worsley, K. J., Chen, J. I., Lerch, J., & Evans, A. C. (2005). Comparing functional connectivity via thresholding correlations and singular value decomposition. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 360(1457), 913–20.CrossRefGoogle Scholar
  33. Worsley, K. J., Taylor, J. E., Tomaiuolo, F., & Lerch, J. (2004). Unified univariate and multivariate random field theory. Neuroimage, 23(Suppl 1), S189–95.CrossRefGoogle Scholar
  34. Xie, J., Douglas, P. K., Wu, Y. N., Brody, A. L., & Anderson, A. E. (2017). Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. Journal of Neuroscience Methods, 15(282), 81–94.CrossRefGoogle Scholar
  35. Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete & Computational Geometry, 33(2), 249–74.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences College of Medicine, Seoul National University (SNU) and SNU HospitalSeoulKorea
  2. 2.Korean Brain Research InstituteDaeguKorea

Personalised recommendations