Skip to main content

Cystic Fibrosis, Primary Ciliary Dyskinesia, and Diffuse Panbronchiolitis: Hereditary and Non-hereditary—What Are the Roles of Genetic Factors in the Pathogenesis of These Diseases?

  • Chapter
  • First Online:
  • 415 Accesses

Abstract

Cystic fibrosis (CF), primary ciliary dyskinesia (PCD), and diffuse panbronchiolitis (DPB) are rare airway diseases. CF is the most common life-shortening genetic disorder in Caucasians, caused by mutations in a single gene on the long arm of chromosome 7 that encodes the cystic fibrosis transmembrane conductance regulator (CFTR). The predominant CFTR mutation is Phe508del, yet more than 2000 variants in this gene have been identified, which can be divided into six classes. Class II mutations, including Phe508del, cause retention of a misfolded protein in the endoplasmic reticulum and subsequent degradation in the proteasome. Patients with Class I, II, and III mutations, which are associated with loss of CFTR function, typically have a severe phenotype, whereas individuals with Class IV, V, and VI mutations, which retain residual CFTR function, have mild lung phenotypes and pancreatic sufficiency. PCD is usually inherited in an autosomal recessive manner and is genetically heterogeneous. Of the 30 mutations that are known to cause PCD, those affecting the DNAH5, DNAI1, DNAAF1 (LRRC50), LRRC6, CCDC39, CCDC40, and DNAH11 genes are found in 15–21%, 2–9%, 4–5%, 3%, 2–10%, 2–8%, and 6% of patients, respectively. In terms of the relationship between phenotype and genotype, mutation of DNAH5, DNAI1, DNAI2, DNAL1, CCDC114, TXNDC3 (NME8), or ARMC4 results in loss of the outer dynein arms. In regard to DPB, an interaction of environmental and genetic factors is thought to underpin the disease. The most probable location for DPB susceptibility genes is thought to lie in a 200 kb major histocompatibility complex (MHC) class I region between HLA-A and HLA-B. This contains the DPB critical region 1 gene (DPCR1, chromosome 6p21.33), as well as MUC21, and the panbronchiolitis-related mucin-like genes 1 and 2 (PBMUCL1 and PBMCL2). The fact that DPCR1, MUC21, PBMUCL1, and PBMUCL2 are all mucin or mucin-like genes is highly relevant for the excessive airway mucus secretion that is typical in DPB. In summary, CF and PCD are both hereditary disorders of mucociliary clearance that result in chronic upper and lower airways disease, while in DPB, it is thought that genetic factors may determine disease susceptibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hamosh A, FitzSimmons SC, Macek M Jr, Knowles MR, Rosenstein BJ, Cutting GR. Comparison of the clinical manifestations of cystic fibrosis in black and white patients. J Pediatr. 1998;132(2):255–9.

    Article  CAS  PubMed  Google Scholar 

  2. Gibson RL, Emerson J, McNamara S, Burns JL, Rosenfeld M, Yunker A, et al. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):841–9.

    Article  PubMed  Google Scholar 

  3. Burgel PR, Bellis G, Olesen HV, Viviani L, Zolin A, Blasi F, et al. Future trends in cystic fibrosis demography in 34 European countries. Eur Respir J. 2015;46(1):133–41.

    Article  PubMed  Google Scholar 

  4. VanDevanter DR, Kahle JS, O’Sullivan AK, Sikirica S, Hodgkins PS. Cystic fibrosis in young children: a review of disease manifestation, progression, and response to early treatment. J Cyst Fibros. 2016;15(2):147–57.

    Article  PubMed  Google Scholar 

  5. Kuehni CE, Frischer T, Strippoli MP, Maurer E, Bush A, Nielsen KG, et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J. 2010;36(6):1248–58.

    Article  CAS  PubMed  Google Scholar 

  6. Carlen B, Stenram U. Primary ciliary dyskinesia: a review. Ultrastruct Pathol. 2005;29(3-4):217–20.

    Article  PubMed  Google Scholar 

  7. Kartagener M. Zur pathogenese der bronkiectasien. Bronkiectasien bei situs viscerum inversus. Beitr Klin Tuberk Spezif Tuberkuloseforsch. 1933;1933(83):489–501.

    Article  Google Scholar 

  8. Goutaki M, Meier AB, Halbeisen FS, Lucas JS, Dell SD, Maurer E, et al. Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J. 2016;48(4):1081–95.

    Article  PubMed  Google Scholar 

  9. Takeuchi K, Kitano M, Ishinaga H, Kobayashi M, Ogawa S, Nakatani K, et al. Recent advances in primary ciliary dyskinesia. Auris Nasus Larynx. 2016;43(3):229–36.

    Article  PubMed  Google Scholar 

  10. Holzmann D, Ott PM, Felix H. Diagnostic approach to primary ciliary dyskinesia: a review. Eur J Pediatr. 2000;159(1-2):95–8.

    Article  CAS  PubMed  Google Scholar 

  11. Collins SA, Gove K, Walker W, Lucas JS. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J. 2014;44(6):1589–99.

    Article  PubMed  Google Scholar 

  12. Homma H, Yamanaka A, Tanimoto S, Tamura M, Chijimatsu Y, Kira S, et al. Diffuse panbronchiolitis. A disease of the transitional zone of the lung. Chest. 1983;83(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  13. Chen W, Shao C, Song Y, Bai C. Primary ciliary dyskinesia complicated with diffuse panbronchiolitis: a case report and literature review. Clin Respir J. 2014;8(4):425–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Homma S, Sakamoto S, Kawabata M, Kishi K, Tsuboi E, Motoi N, et al. Comparative clinicopathology of obliterative bronchiolitis and diffuse panbronchiolitis. Respiration. 2006;73(4):481–7.

    Article  PubMed  Google Scholar 

  15. Keicho N, Hijikata M. Genetic predisposition to diffuse panbronchiolitis. Respirology. 2011;16(4):581–8.

    Article  PubMed  Google Scholar 

  16. Anthony M, Singham S, Soans B, Tyler G. Diffuse panbronchiolitis: not just an Asian disease: Australian case series and review of the literature. Biomed Imaging Interv J. 2009;5(4):e19.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Izumi T, Doi O, Nobechi A, et al. Nation-wide survey of diffuse panbronchiolitis. Annual report on the study of interstitial lung disease in 1982. Grant-in Aid from the Ministry of Health and Welfare of Japan, Tokyo; 1983. p. 3–41.

    Google Scholar 

  18. Okada M, Saito N, Hosoda Y, et al. An epidemiological study of DPB in a large company. Annual report on the study of interstitial lung disease in 1980. Grant-in Aid from the Ministry of Health and Welfare of Japan, Tokyo; 1980. p. 25–8.

    Google Scholar 

  19. Shinkai M, Henke MO, Rubin BK. Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther. 2008;117(3):393–405.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson P, Schechter MS, Sly PD, Winfield K, Smith J, Brennan S, et al. Clarithromycin therapy for patients with cystic fibrosis: a randomized controlled trial. Pediatr Pulmonol. 2012;47(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  21. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  CAS  PubMed  Google Scholar 

  22. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–80.

    Article  CAS  PubMed  Google Scholar 

  23. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.

    Article  CAS  PubMed  Google Scholar 

  24. Castellani C, Cuppens H, Macek M Jr, Cassiman JJ, Kerem E, Durie P, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros. 2008;7(3):179–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31.

    Article  CAS  PubMed  Google Scholar 

  26. Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372(4):351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bell SC, De Boeck K, Amaral MD. New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls. Pharmacol Ther. 2015;145:19–34.

    Article  CAS  PubMed  Google Scholar 

  28. Boyle MP, De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med. 2013;1(2):158–63.

    Article  PubMed  Google Scholar 

  29. Wilschanski M, Zielenski J, Markiewicz D, Tsui LC, Corey M, Levison H, et al. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr. 1995;127(5):705–10.

    Article  CAS  PubMed  Google Scholar 

  30. Boucher RC. Bronchiectasis: a continuum of ion transport dysfunction or multiple hits? Am J Respir Crit Care Med. 2010;181(10):1017–9.

    Article  PubMed  Google Scholar 

  31. Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan TF Jr, et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener’s syndrome). J Med Genet. 1994;31(6):493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal flow and the generation of left-right asymmetry. Cell. 2006;125(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  33. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 2013;188(8):913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189(6):707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugiyama Y. Diffuse panbronchiolitis. Clin Chest Med. 1993;14(4):765–72.

    PubMed  CAS  Google Scholar 

  36. Park MH, Kim YW, Yoon HI, Yoo CG, Han SK, Shim YS, et al. Association of HLA class I antigens with diffuse panbronchiolitis in Korean patients. Am J Respir Crit Care Med. 1999;159(2):526–9.

    Article  CAS  PubMed  Google Scholar 

  37. Keicho N, Ohashi J, Tamiya G, Nakata K, Taguchi Y, Azuma A, et al. Fine localization of a major disease-susceptibility locus for diffuse panbronchiolitis. Am J Hum Genet. 2000;66(2):501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86(1):245–78.

    Article  CAS  PubMed  Google Scholar 

  39. Hijikata M, Matsushita I, Tanaka G, Tsuchiya T, Ito H, Tokunaga K, et al. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum Genet. 2011;129(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  40. Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol. 2006;34(6):661–5.

    Article  CAS  PubMed  Google Scholar 

  41. Mishina K, Shinkai M, Shimokawaji T, Nagashima A, Hashimoto Y, Inoue Y, et al. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells. Int Immunopharmacol. 2015;29(2):448–53.

    Article  CAS  PubMed  Google Scholar 

  42. Poletti V, Casoni G, Chilosi M, Zompatori M. Diffuse panbronchiolitis. Eur Respir J. 2006;28(4):862–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinkai, M. (2018). Cystic Fibrosis, Primary Ciliary Dyskinesia, and Diffuse Panbronchiolitis: Hereditary and Non-hereditary—What Are the Roles of Genetic Factors in the Pathogenesis of These Diseases?. In: Kaneko, T. (eds) Clinical Relevance of Genetic Factors in Pulmonary Diseases. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8144-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8144-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8143-9

  • Online ISBN: 978-981-10-8144-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics