Skip to main content

Bronchial Asthma: Is Asthma Inherited?

  • Chapter
  • First Online:
Clinical Relevance of Genetic Factors in Pulmonary Diseases

Abstract

Asthma runs strongly in families and has a heritability rate of up to 70%. Genetic studies offer a structured means for understanding the causes of asthma and for identifying targets of treatment for the syndrome. As with studies of other common complex diseases, genetic studies of asthma have led to considerable advances in the understanding of this disease. Genome-wide association studies have greatly advanced the identification of the most important genes predisposing individuals to asthma. Several genes act in pathways that communicate the presence of epithelial damage to the adaptive immune system; identification of these genes has provided a new focus for the development of effective therapies. However, these loci explain only a small proportion of the heritability of the disease because the phenotypic heterogeneity of asthma greatly complicates genetic analysis. A specific phenotype is likely to be more closely related to a specific pathogenetic mechanism, and focusing on a particular phenotype may increase the power of genetic studies and consequently lead to a better understanding of an endotype defined by a distinct functional or pathobiological mechanism. Genetic predisposition to the dysregulation of particular pathways may further help to define subgroups of asthma. In the end, this approach may lead to diagnosis for patients based, in part, on their genetic makeup and to new therapeutic prospects. In addition, further work is necessary to understand the biological consequences of the known susceptibility variants; the most immediate challenge in this field is the systematic analysis of the precise functions of these genes in the pathogenesis of asthma. Detailed functional dissection of the roles of these genes in asthma will point the way to new therapies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature. 1996;383(6597):247–50.

    Article  CAS  PubMed  Google Scholar 

  2. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis. 1990;142:1351–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242:10–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med. 2001;344:350–62.

    Article  CAS  PubMed  Google Scholar 

  5. Carr TF, Bleecker E. Asthma heterogeneity and severity. World Allergy Organ J. 2016;9(1):41. eCollection 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42:650–8.

    Article  CAS  PubMed  Google Scholar 

  7. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.

    Article  CAS  PubMed  Google Scholar 

  9. Weiss ST, Raby BA, Rogers A. Asthma genetics and genomics 2009. Curr Opin Genet Dev. 2009;19:279–82.

    Article  CAS  PubMed  Google Scholar 

  10. Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol. 2010;125(suppl 2):S81–94.

    Article  PubMed  Google Scholar 

  11. Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.

    Article  CAS  PubMed  Google Scholar 

  12. Dixon AL, Liang L, Moffatt MF, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202.

    Article  CAS  PubMed  Google Scholar 

  13. Bouzigon E, Corda E, Aschard H, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med. 2008;359:1985.

    Article  CAS  PubMed  Google Scholar 

  14. Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirota T, Harada M, Sakashita M, et al. Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol. 2008;121:769.

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Romieu I, Sienra-Monge JJ, et al. Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy. 2009;64:629.

    Article  CAS  PubMed  Google Scholar 

  17. Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43:887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7.

    Article  CAS  PubMed  Google Scholar 

  19. Myers RA, Himes BE, Gignoux CR, et al. Further replication studies of the EVE Consortium meta-analysis identifies 2 asthma risk loci in European Americans. J Allergy Clin Immunol. 2012;130:1294.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hsu CL, Neilsen CV, Bryce PJ. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One. 2010;5:e11944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Préfontaine D, Lajoie-Kadoch S, Foley S, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009;183:5094.

    Article  CAS  PubMed  Google Scholar 

  22. Préfontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 2010;125:752.

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira MA, Matheson MC, Duffy DL, et al, for the Australian Asthma Genetics Consortium. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378:1006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sears MR, Greene JM, Willan AR, et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003;349:1414–22.

    Article  CAS  PubMed  Google Scholar 

  25. Hirschhorn JN. Genomewide association studies--illuminating biologic pathways. N Engl J Med. 2009;360(17):1699–701.

    Article  CAS  PubMed  Google Scholar 

  26. Barreto-Luis A, Corrales A, Acosta-Herrera M, et al. A pathway-based association study reveals variants from Wnt signaling genes contributing to asthma susceptibility. Clin Exp Allergy. 2017. https://doi.org/10.1111/cea.12883].

  27. Yatagai Y, Sakamoto T, Masuko H, et al. Genome-wide association study for levels of total serum IgE identifies HLA-C in a Japanese population. PLoS One. 2013;8(12):e80941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weinmayr G, Weiland SK, Bjorksten B, et al. Atopic sensitization and the international variation of asthma symptom prevalence in children. Am J Respir Crit Care Med. 2007;176:565–74.

    Article  PubMed  Google Scholar 

  29. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–6.

    Article  CAS  PubMed  Google Scholar 

  30. Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29:175–8.

    Article  CAS  PubMed  Google Scholar 

  31. Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007;120(6):1233–44.

    Article  CAS  PubMed  Google Scholar 

  32. Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46:51–5.

    Article  CAS  PubMed  Google Scholar 

  33. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23.

    Article  PubMed  Google Scholar 

  34. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178:218–24.

    Article  PubMed  Google Scholar 

  35. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368:804–13.

    Article  CAS  PubMed  Google Scholar 

  36. Diette GB, Krishnan JA, Dominici F, et al. Asthma in older patients: factors associated with hospitalization. Arch Intern Med. 2002;162:1123–32.

    Article  PubMed  Google Scholar 

  37. Kaneko Y, Masuko H, Sakamoto T, et al. Asthma phenotypes in Japanese adults - their associations with the CCL5 and ADRB2 genotypes. Allergol Int. 2013;62(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  38. Hizawa N, Yamaguchi E, Konno S, et al. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med. 2002;166:686–90.

    Article  PubMed  Google Scholar 

  39. Hizawa N. Beta-2 adrenergic receptor genetic polymorphisms and asthma. J Clin Pharm Ther. 2009;34(6):631–43.

    Article  CAS  PubMed  Google Scholar 

  40. Summerhill E, Leavitt SA, Gidley H, et al. beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am J Respir Crit Care Med. 2000;162(2 Pt 1):599–602.

    Article  CAS  PubMed  Google Scholar 

  41. Hall IP, Blakey JD, Al Balushi KA, et al. Beta2-adrenoceptor polymorphisms and asthma from childhood to middle age in the British 1958 birth cohort: a genetic association study. Lancet. 2006;368(9537):771–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang G, Hayden CM, Khoo SK, et al. Beta2-Adrenoceptor polymorphisms and asthma phenotypes: interactions with passive smoking. Eur Respir J. 2007;30(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  43. Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet. 2011;43:893–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Licona-Limón P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):536–42.

    Article  CAS  PubMed  Google Scholar 

  45. Gauvreau GM, O’Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370:2102.

    Article  CAS  PubMed  Google Scholar 

  46. Noguchi E, Sakamoto H, Hirota T, et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011;7(7):e1002170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan PY, Carrera Silva EA, De Kouchkovsky D, et al. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science. 2016;352(6281):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bisgaard H, Bønnelykke K, Sleiman PM, et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med. 2009;179(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  49. Çalışkan M, Bochkov YA, Kreiner-Møller E, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med. 2013;368:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R, et al. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010;19:111–21.

    Article  CAS  PubMed  Google Scholar 

  51. Liu YP, Rajamanikham V, Baron M, et al. Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in human leucocytes. Clin Exp Allergy. 2017;47(3):371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yatagai Y, Sakamoto T, Yamada H, et al. Genomewide association study identifies HAS2 as a novel susceptibility gene for adult asthma in a Japanese population. Clin Exp Allergy. 2014;44(11):1327–34.

    Article  CAS  PubMed  Google Scholar 

  54. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.

    Article  CAS  PubMed  Google Scholar 

  55. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5:e8578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sethi S, Maloney J, Grove L, et al. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Desai H, Eschberger K, Wrona C, et al. Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11:303–9.

    Article  PubMed  Google Scholar 

  58. Zhang Q, Illing R, Hui CK, Downey K, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res. 2012;13:35.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bisgaard H, Hermansen MN, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357:1487–95.

    Article  CAS  PubMed  Google Scholar 

  60. Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002;57:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Isada A, Konno S, Hizawa N, et al. A functional polymorphism (-603A --> G) in the tissue factor gene promoter is associated with adult-onset asthma. J Hum Genet. 2010;55:167–74.

    Article  CAS  PubMed  Google Scholar 

  62. Taniguchi N, Konno S, Hattori T, et al. The CC16 A38G polymorphism is associated with asymptomatic airway hyper-responsiveness and development of late-onset asthma. Ann Allergy Asthma Immunol. 2013;111:376–81.

    Article  CAS  PubMed  Google Scholar 

  63. Taniguchi N, Konno S, Isada A, et al. Association of the CAT-262C>T polymorphism with asthma in smokers and the nonemphysematous phenotype of chronic obstructive pulmonary disease. Ann Allergy Asthma Immunol. 2014;113:31–6.

    Article  CAS  PubMed  Google Scholar 

  64. Yatagai Y, Hirota T, Sakamoto T, et al. Variants near the HLA complex group 22 gene confer increased susceptibility to late-onset asthma in Japanese populations. J Allergy Clin Immunol. 2016;138(1):281. pii: S0091-6749(16)00024-5.

    Article  CAS  PubMed  Google Scholar 

  65. Hijikata M, Matsushita I, Tanaka G, et al. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum Genet. 2011;129:117–28.

    Article  CAS  PubMed  Google Scholar 

  66. Ober C, Tan Z, Sun Y, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gomez JL, Crisafi GM, Holm CT, et al. Genetic variation in chitinase 3-like 1 (CHI3L1) contributes to asthma severity and airway expression of YKL-40. J Allergy Clin Immunol. 2015;136:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Żurawska-Płaksej E, Ługowska A, Hetmańczyk K, et al. Neutrophils as a source of chitinases and chitinase-like proteins in type 2 diabetes. PLoS One. 2015;10(10):e0141730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hinks TSC, Brown T, Lau LCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3–like protein 1. J Allergy Clin Immunol. 2016 Jul;138(1):61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ege MJ, Mayer M, Normand AC, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9.

    Article  CAS  PubMed  Google Scholar 

  71. Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration. 1991;58(3-4):145–9.

    Article  CAS  PubMed  Google Scholar 

  72. Brusselle GG, VanderStichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68:322–9.

    Article  PubMed  Google Scholar 

  73. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  74. Spagnolo P, Fabbri LM, Bush A. Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2013;42(1):239–51.

    Article  CAS  PubMed  Google Scholar 

  75. Serisier D. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir Med. 2013;1:262–74.

    Article  PubMed  Google Scholar 

  76. Sibila O, Garcia-Bellmunt L, Giner J, et al. Identification of airway bacterial colonization by an electronic nose in Chronic Obstructive Pulmonary Disease. Respir Med. 2014;108(11):1608–14.

    Article  PubMed  Google Scholar 

  77. Barker DJ, Winter PD, Osmond C, et al. Weight in infancy and death from ischemic heart disease. Lancet. 1989;2:577–80.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma S, Chhabra D, Kho AT, Hayden LP, Tantisira KG, Weiss ST. The genomic origins of asthma. Thorax. 2014;69(5):481–7.

    Article  PubMed  Google Scholar 

  79. Haland G, Carlsen KC, Sandvik L, et al. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006;355:1682–9.

    Article  CAS  PubMed  Google Scholar 

  80. Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1(9):728–42.

    Article  PubMed  Google Scholar 

  81. Masuko H, Sakamoto T, Kaneko Y, et al. Lower FEV1 in non-COPD, nonasthmatic subjects: association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes. Int J Chron Obstruct Pulmon Dis. 2011;6:181–9.

    PubMed  PubMed Central  Google Scholar 

  82. Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  83. Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  84. Soler AM, Loth DW, Wain LV, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43(11):1082–90.

    Article  CAS  Google Scholar 

  85. Yamada H, Yatagai Y, Masuko H, et al. Heritability of pulmonary function estimated from genome-wide SNPs in healthy Japanese adults. Respir Investig. 2015;53(2):60–7.

    Article  PubMed  Google Scholar 

  86. Yamada H, Masuko H, Yatagai Y, et al. Role of lung function genes in the development of asthma. PLoS One. 2016;11(1):e0145832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fitzpatrick AM, Teague WG, Meyers DA, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol. 2011;127(2):382–9.

    Article  PubMed  Google Scholar 

  88. Lodrup Carlsen KC, Mowinckel P, Hovland V, Haland G, Riiser A, Carlsen KH. Lung function trajectories from birth through puberty reflect asthma phenotypes with allergic comorbidity. J Allergy Clin Immunol. 2014;134(4):917–23.

    Article  PubMed  Google Scholar 

  89. Kreiner-Møller E, Bisgaard H, Bønnelykke K. Prenatal and postnatal genetic influence on lung function development. J Allergy Clin Immunol. 2014;134(5):1036–42.

    Article  PubMed  Google Scholar 

  90. Gauderman WJ, Urman R, Avol E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Modena BD, Bleecker ER, Busse WW, et al. Gene expression correlated to severe asthma characteristics reveals heterogeneous mechanisms of severe disease. Am J Respir Crit Care Med. 2017;195(11):1449. https://doi.org/10.1164/rccm.201607-1407OC.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Hizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hizawa, N. (2018). Bronchial Asthma: Is Asthma Inherited?. In: Kaneko, T. (eds) Clinical Relevance of Genetic Factors in Pulmonary Diseases. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8144-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8144-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8143-9

  • Online ISBN: 978-981-10-8144-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics