Skip to main content

Approaches to Understanding the Genetic Basis of Complex Diseases: Overview—What Is the Rationale for the Genome-Wide Approach to Understand Complex Diseases, Its Application and Limitations

  • Chapter
  • First Online:
  • 402 Accesses

Abstract

Pulmonary diseases are complex disorders caused by a number of environmental and genetic factors. Recent advances in technologies and study designs have revealed the genetic components of common diseases. Genetic mapping is an unbiased method to comprehensively identify genes and biological pathways involved in diseases or traits. Genome-wide association studies (GWASs) have convincingly identified disease-associated loci. Most of the associated variants identified by GWASs are located in noncoding regions, and the functional link between those disease-associated variants and clinical phenotypes remains unclear. Recent progress in next-generation sequencing (NGS) technologies has improved the functional annotation of the human genome and highlighted the importance of noncoding regions. Epigenetic studies, transcriptome analyses, and characterization of cis-regulatory regions have revealed a wide variety of molecular phenotypes: RNA expression and stability, transcription factor binding, DNA methylation, histone modifications, and protein levels in various cell types and tissues. Recent genome editing technology and pluripotent stem cells are also helpful to assess the functional effects of genetic risk variants in disease-relevant cell types. Interdisciplinary research to elucidate the relationships between risk variants and molecular phenotypes in the pathologically relevant cell types is necessary to identify the targets of the risk loci and improve our mechanistic understanding of diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470:187–97.

    Article  CAS  PubMed  Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  3. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  CAS  PubMed  Google Scholar 

  4. D A, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.

    Article  CAS  Google Scholar 

  5. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.

    Article  CAS  PubMed  Google Scholar 

  6. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11:415–25.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Bailey SD, Lupien M. Laying a solid foundation for Manhattan—‘setting the functional basis for the post-GWAS era’. Trends Genet. 2014;30:140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8:e1002822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.

    Article  CAS  PubMed  Google Scholar 

  11. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    Article  CAS  PubMed  Google Scholar 

  12. Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35:809–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li YR, Keating BJ. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 2014;6:91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raj T, Kuchroo M, Replogle JM, Raychaudhuri S, Stranger BE, De Jager PL. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet. 2013;92:517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka G, Dubois PC, et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet. 2010;86:970–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.

    Article  CAS  PubMed  Google Scholar 

  17. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet. 2016;17:129–45.

    Article  CAS  PubMed  Google Scholar 

  19. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  CAS  PubMed  Google Scholar 

  20. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014 Feb;15(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med. 2015;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Torgerson DG, Capurso D, Mathias RA, Graves PE, Hernandez RD, Beaty TH, et al. Resequencing candidate genes implicates rare variants in asthma susceptibility. Am J Hum Genet. 2012;90:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathelier A, Shi W, Wasserman WW. Identification of altered cis-regulatory elements in human disease. Trends Genet. 2015;31:67–76.

    Article  CAS  PubMed  Google Scholar 

  26. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fenouil R, Cauchy P, Koch F, Descostes N, Cabeza JZ, Innocenti C, et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 2012;22:2399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11:559–71.

    Article  CAS  PubMed  Google Scholar 

  29. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13:840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article  CAS  PubMed Central  Google Scholar 

  31. Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol. 2014;15:777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.

    Article  CAS  PubMed  Google Scholar 

  33. Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520:670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Price AL, Spencer CC, Donnelly P. Progress and promise in understanding the genetic basis of common diseases. Proc Biol Sci. 2015;282:20151684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  36. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Battle A, Montgomery SB. Determining causality and consequence of expression quantitative trait loci. Hum Genet. 2014;133:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Consortium GTE. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  39. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352:600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science. 2014;343:1246980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343:1246949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet. 2016;17:207–23.

    Article  CAS  PubMed  Google Scholar 

  43. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543(7644):199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A, et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science. 2013;342:1367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488:508–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518:337–43.

    Article  CAS  PubMed  Google Scholar 

  47. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferreira MA, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, et al. Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. J Allergy Clin Immunol. 2017;139(4):1148.

    Article  CAS  PubMed  Google Scholar 

  49. Netea MG, Joosten LA, Li Y, Kumar V, Oosting M, Smeekens S, et al. Understanding human immune function using the resources from the Human Functional Genomics Project. Nat Med. 2016;22:831–3.

    Article  CAS  PubMed  Google Scholar 

  50. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167:1398–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lander ES. The Heroes of CRISPR. Cell. 2016;164:18–28.

    Article  CAS  PubMed  Google Scholar 

  52. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  53. Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature. 2015;520:558–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.

    Article  CAS  PubMed  Google Scholar 

  55. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi Tamari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamari, M., Hirota, T. (2018). Approaches to Understanding the Genetic Basis of Complex Diseases: Overview—What Is the Rationale for the Genome-Wide Approach to Understand Complex Diseases, Its Application and Limitations. In: Kaneko, T. (eds) Clinical Relevance of Genetic Factors in Pulmonary Diseases. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8144-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8144-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8143-9

  • Online ISBN: 978-981-10-8144-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics