Skip to main content

Inverse and Feedback Analyses Based on the Finite Element Method

  • Chapter
  • First Online:
Computational Geomechanics and Hydraulic Structures

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 762 Accesses

Abstract

To undertake a successful computation task concerning the construction and operation process of hydraulic structures, one of the mostly concerned obstacles is the limited or incomplete sets of input data. This chapter presents the study on the inverse and feedback analyses for hydraulic structures using the FEM, intended to provide another parametric solution in addition to traditional ones (e.g. field exploration and investigation, laboratory experiment and field test, as well as engineering analogue). The principles and strategies with regard to the specific issues of in situ geo-stresses and material parameters (mechanical, permeable and thermal), are elaborated. The mathematical tools, particularly the algorithms for constrained nonlinear optimization problems arise from the inverse analysis, are presented. The aggression belonging to mathematical programming algorithms and the ANN belonging to heuristic search algorithms are implemented and validated in detail. In addition to a number of validation examples interspersed within the context, this chapter is closed with two engineering application cases (dam foundation, cut slope).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai-Homoud AS, Tai AB, Taqieddin SA. A comparative study of slope stability methods and mitigative design of a highway embankment landslide with a potential for deep seated sliding. Eng Geol. 1997;47(1–2):157–73.

    Article  Google Scholar 

  • Box MJ. A new method of constrained optimization and a comparison with other methods. Comput J. 1965;8(1):42–52.

    Article  MathSciNet  Google Scholar 

  • Camp C, Pezeshk S, Cao GZ. Optimized design of two-dimensional structures using a genetic algorithm. J Struct Eng. 1998;124(5):551–9.

    Article  Google Scholar 

  • Chattefuee S, Hadi AS. Regression analysis by example. 4th ed. New Jersey, USA: Wiley; 2006.

    Book  Google Scholar 

  • Chen J, Hopmans JW, Grismer ME. Parameter estimation of two-fluid capillary pressure-saturation and permeability function. Adv Water Resour. 1999;22(5):479–93.

    Article  Google Scholar 

  • Chen SH, Chen SF, Shahrour I, Egger P. The feedback analysis of excavated rock slope. Rock Mech Rock Eng. 2001;34(1):39–56.

    Article  Google Scholar 

  • Chi SY, Chern JC, Lin CC. Optimized back-analysis for tunnelling-induced ground movement using equivalent ground load model. Tunn Undergr Space Technol. 2001;16(3):159–65.

    Article  Google Scholar 

  • de Marsily G, Delhomme JP, Delay F, Buoro A. 40 years of inverse solution in hydrogeology. Earth Planet Sci. 1999;329(2):73–87 (in French).

    Google Scholar 

  • Draper NR, Smith H. Applied regression analysis. New York, USA: Wiley; 1966.

    MATH  Google Scholar 

  • Engl HW, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht, Netherlands: Kluwer Academic Publishers; 1996.

    Book  Google Scholar 

  • Erbatur F, Al-Hussainy M. Optimum design of frames. Comput Struct. 1992;45(5–6):887–91.

    Article  Google Scholar 

  • Fang KT, Lin DKJ, Winker P, Zhang Y. Uniform design: theory and application. Technometrics. 2000;42(3):237–48.

    Article  MathSciNet  Google Scholar 

  • Fatullayev A, Can E. Numerical procedure for identification of water capacity of porous media. Math Comput Simul. 2000;52(2):113–20.

    Article  MathSciNet  Google Scholar 

  • Finsterle S, Faybishenko B. Inverse modelling of a radial multistep outflow experiment for determining unsaturated hydraulic properties. Adv Water Resour. 1999;22(5):431–44.

    Article  Google Scholar 

  • Gens A, Ledesma A, Alonso EE. Estimation of parameters in geotechnical back analysis. II: application to a tunnel problem. Comput Geotech. 1996;18(1):29–46.

    Article  Google Scholar 

  • Gioda G. Some applications of mathematical programming in geomechanics. In: Desai CS, Gioda G, editors. Numerical methods and constitutive modelling in geomechanics. New York, USA: Springer; 1990. p. 319–50.

    MATH  Google Scholar 

  • Gioda G, Sakurai S. Back analysis procedures for the interpretation of field measurements in geomechanics. Int J Numer Anal Meth Geomech. 1987;11(6):555–83.

    Article  Google Scholar 

  • Goldberg DE. Genetic algorithm in search, optimization and machine learning. 2nd ed. Reading, MA, USA: Addison-Wesley; 1989.

    MATH  Google Scholar 

  • Groetsch CW. Inverse Problems in the mathematical sciences. New York, USA: Springer; 1993.

    Book  Google Scholar 

  • Guo WD. Visco-elastic consolidation subsequent to pile installation. Comput Geotech. 2000;26(2):113–44.

    Article  Google Scholar 

  • Haftka RT, Scott EP, Cruz JR. Optimization and experiments: a survey. Appl Mech Rev. 1998;51(7):435–48.

    Article  Google Scholar 

  • Hanna S, Jim Yeh TC. Estimation of co-conditional moments of transmissivity, hydraulic head and velocity fields. Adv Water Resour. 1998;22(1):87–95.

    Article  Google Scholar 

  • Hoek E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int J Rock Mech Min Sci Geomech Abstr. 1990;12(3):227–9.

    Article  Google Scholar 

  • Hoek E, Brown ET. Empirical strength criterion for rock masses. J Geotech Eng Div, ASCE. 1980;106(GT9):1013–35.

    Google Scholar 

  • Hojo A, Nakamura M, Sakurai S, Akutagawa S. Characterization of non-elastic ground behavior of a large underground power house cavern by back analysis. Int J Rock Mech Min Sci. 1997;34(3–4): Paper No. 008.

    Google Scholar 

  • Hsich PA, Neuman SP. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media 1, theory. Water Resour Res. 1985;21(11):1655–65.

    Article  Google Scholar 

  • Hsich PA, Neuman SP, Stiles GK, Simpson ES. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media 2, methodology and application to fractured rocks. Water Resour Res. 1985;21(11):1667–76.

    Article  Google Scholar 

  • Jhorar RK, Bastiaanssen WGM, Fesses RA, Van Dam JC. Inversely estimating soil hydraulic functions using evapor transpiration fluxes. J Hydrol. 2002;258(1):198–213.

    Article  Google Scholar 

  • Johari A, Javadi AA, Habibagahi G. Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Comput Geotech. 2011;38(1):2–13.

    Article  Google Scholar 

  • Joshi RR. Immune network memory: an inventory approaches. Comput Oper Res. 1995;22(6):575–91.

    Article  Google Scholar 

  • Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput. 2011;11(1):652–7.

    Article  Google Scholar 

  • Katsifarakis KL, Karpouzos DK, Theodossiou N. Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems. Eng Anal Bound Elem. 1999;23(7):555–65.

    Article  Google Scholar 

  • Kim YT, Lee SR. An equivalent model and back-analysis technique for modelling in situ consolidation behavior of drainage-installed soft deposits. Comput Geotech. 1997;20(2):125–42.

    Article  MathSciNet  Google Scholar 

  • Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Shin HS. Neural network based prediction of ground surface settlements due to tunnelling. Comput Geotech. 2001;28(6–7):517–47.

    Article  Google Scholar 

  • Krajewski W, Edelmann L, Plamitzer R. Ability and limits of numerical methods for the design of deep construction pits. Comput Geotech. 2001;28(6–7):425–44.

    Article  Google Scholar 

  • Kuhn HW. Nonlinear programming: a historical view. In: Giorgi G, Kjeldsen TH, editors. Traces and emergence of nonlinear programming. Basel, Switzerland: Springer; 2014. p. 393–414.

    Chapter  Google Scholar 

  • Kuhn HW, Tucker AW. Nonlinear programming. In: Proceedings of 2nd Berkeley symposium on mathematics, statistics and probability. Berkeley (USA): University of California Press; 1951. p. 481–92.

    Google Scholar 

  • Lagaros ND, Papadrakakis M, Kokossalakis G. Structural optimization using evolutionary algorithms. Comput Struct. 2002;80(7–8):571–89.

    Article  Google Scholar 

  • Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical back analysis. I: maximum likelihood approach. Comput Geoetch. 1996a;18(1):1–27.

    Article  Google Scholar 

  • Ledesma A, Gens A, Alonso EE. Parameter and variance estimation in geotechnical back-analysis using prior information. Int J Numer Anal Meth Geomech. 1996b;20(2):119–41.

    Article  Google Scholar 

  • Lesnic D, Elliott L, Ingham DB, Clennell B, Knipe RJ. A mathematical model and numerical investigation for determining the hydraulic conductivity of rocks. Int J Rock Mech Min Sci. 1997;34(5):741–59.

    Article  Google Scholar 

  • Leu SS, Chen CN, Chang SL. Data mining for tunnel support stability: neural network approach. Autom Constr. 2001;10(4):429–41.

    Article  Google Scholar 

  • Li HL, Yang QC. A least-square penalty method algorithm for inverse problems of steady-state aquifer models. Adv Water Res. 2000;23(8):867–80.

    Article  Google Scholar 

  • Louis C, Maini YN. Determination of in-situ hydraulic parameters in jointed rock. In: Proceedings of 2nd ISRM congress. Belgrade, Yugoslavia: ISRM; 1970. p. 235–45.

    Google Scholar 

  • Lynden-Bell D, Gurzadyan V. Victor Amazaspovich Ambartsumian. Biographical Mem Fellows Roy Soc. 1998;44:23.

    Article  Google Scholar 

  • Mayer AS, Huang C. Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method. Adv Water Res. 1999;22(8):841–53.

    Article  Google Scholar 

  • McCall J. Genetic algorithms for modelling and optimisation. J Comput Appl Math. 2005;184(1):205–22.

    Article  MathSciNet  Google Scholar 

  • Mello Franco JA, Assis AP, Mansur WJ, Telles JCF, Santiago AF. Design aspects of the underground structures of the Serra da Mesa hydroelectric power plant. Int J Rock Mech Min Sci. 1997;34(3–4):Paper No. 016.

    Google Scholar 

  • Millar DL, Hudson JA. Performance monitoring of rock engineering systems using neural networks. In: Symposium of artificial intelligence in the minerals sector. University of Nottingham, UK: Institute of Mining Metallurgy; 1994. p. A3–A16.

    Google Scholar 

  • Mitsuo G, Cheng RW. Genetic algorithm and engineering design. New York, USA: Wiley-Interscience; 1997.

    Google Scholar 

  • Moses F. Optimum structural design using linear programming. J Struct Div, ASCE. 1964;90:89–104.

    Google Scholar 

  • Murakami A, Hasegawa T, Sakaguchi H. Interpretation of ground performances based on back analysis results. In: Beer G, Booker JR, Carter JP, editors. Computer methods and advances in geomechanics. Rotterdam, Netherlands: AA Balkema; 1991. p. 1011–5.

    Google Scholar 

  • Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.

    Article  MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ. Numerical optimization. New York, USA: Springer; 1999.

    Book  Google Scholar 

  • Nutzmann G, Thiele M, Maciejewski S, Joswig K. Inverse modelling techniques for determining hydraulic properties of coarse-textured porous media by transient outflow methods. Adv Water Res. 1998;22(3):273–84.

    Article  Google Scholar 

  • Obara Y, Nakamura N, Kang SS, Kaneko K. Measurement of local stress and estimation of regional stress associated with stability assessment of an open-pit rock slope. Int J Rock Mech Min Sci. 2000;37(8):1211–21.

    Article  Google Scholar 

  • Ohkami T, Swoboda G. Parameter identification of viscoelastic materials. Comput Geotech. 1999;24(4):279–95.

    Article  Google Scholar 

  • Okui Y, Tokunaga A, Shinji M, Mori M. New back analysis method of slope stability by using field measurements. Int J Rock Mech Min Sci. 1997;34 (3–4): Paper No. 234.

    Google Scholar 

  • Pelizza S, Oreste PP, Pella D, Oggeri C. Stability analysis of a large cavern in Italy for quarrying exploitation of a pink marble. Tunn Undergr Space Technol. 2000;15(4):421–35.

    Article  Google Scholar 

  • Romanov VG. Inverse problems of mathematical physics. Utrecht, Netherlands: VNU Science Press; 1987.

    Google Scholar 

  • Rossmanith HP, Uenishi K. Post-blast bench block stability assessment. Int J Rock Mech Min Sci. 1997; 34(3–4): Paper No. 264.

    Google Scholar 

  • Roth C, Chiles JP, de Fouquet C. Combining geostatistics and flow simulators to identify transmissivity. Adv Water Res. 1998;21(7):555–65.

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, editors. Parallel distributed processing, vol. 1. Massachusetts, USA: MIT Press; 1986. p. 318–62.

    Google Scholar 

  • Russo D. On the estimation of parameters of log-unsaturated conductivity covariance from solute transport data. Adv Water Res. 1997;20(4):191–205.

    Article  Google Scholar 

  • Sakurai S. Lessons learned from field measurements in tunnelling. Tunn Undergr Space Technol. 1997;12(4):453–60.

    Article  Google Scholar 

  • Sakurai S, Akutagawa S. Some aspects of back analysis in geotechnical engineering. In: Ribeiro e Sousa L, Grossmann NF, editors. Proceedings on 1993 ISRM international symposium–EUROCK 93. Rotterdam, Netherlands: AA Balkema; 1995. p. 1130–40.

    Google Scholar 

  • Sakurai S. Direct strain evaluation technique in construction of underground openings. In: Proceedings on 22nd US symposium of rock mechanics. Cambridge, MA, USA: MIT Press; 1981. p. 278–82.

    Google Scholar 

  • Sakurai S, Takeuchi K. Back analysis of measured displacement of tunnels. Rock Mech Rock Eng. 1983;16(3):173–80.

    Article  Google Scholar 

  • Singh B, Viladkar MN, Samadhiya NK, Mehrotra VK. Rock mass strength parameters mobilised in tunnels. Tunn Undergr Space Technol. 1997;12(1):47–54.

    Article  Google Scholar 

  • Sklavounos P, Sakellariou M. Intelligent classification of rock masses. In: Adey RA, Rzevski G, Tasso C, editors. Applications of artificial intelligence in engineering—proceedings of the tenth international conference on applications of artificial intelligence in engineering. Udine, Italy: Computational Mechanics Publications; 1995. p. 387–93.

    Google Scholar 

  • Sonmez H, Ulusay R, Gokceoglu C. A practical procedure for the back analysis of slope failure in closely jointed rock. Int J Rock Mech Min Sci. 1998;35(2):219–33.

    Article  Google Scholar 

  • Spendley W, Hext GR, Himsworth FR. Sequential application of simplex designs in optimization and evolutionary operation. Technometrics. 1962;4(4):441–61.

    Article  MathSciNet  Google Scholar 

  • SriVidya A, Ranganathan R. Reliability based optimal design of reinforced concrete frames. Comput Struct. 1995;57(4):651–61.

    Article  Google Scholar 

  • Vasco DW, Karasaki K. Inversion of pressure observations: an integral formulation. J Hydrol. 2001;253(1–4):27–40.

    Article  Google Scholar 

  • Wang PP, Zheng C. An efficient approach for successively perturbed groundwater models. Adv Water Res. 1998;21(6):499–508.

    Article  Google Scholar 

  • Wen XH, Capilla JE, Deutsch CV, Gomez-Hernandez JJ, Cullick AS. A program to create permeability fields that honour single-phase flow rate and pressure data. Comput Geosci. 1999;25(3):217–30.

    Article  Google Scholar 

  • Wen XH, Deutsch CV, Cullick AS. Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. J Hydrol. 2002;255(1–4):151–68.

    Article  Google Scholar 

  • Werbos PJ. The roots of back propagation: from ordered derivatives to neural networks and political forecasting. New York, USA: Wiley; 1994.

    Google Scholar 

  • Yang Y, Zhang Q. Application of neural networks to rock engineering systems (RES). Int J Rock Mech Min Sci. 1998;35(6):727–45.

    Article  Google Scholar 

  • Yang L, Zhang K, Wang Y. Back analysis of initial rock stress and time-dependent parameters. J Rock Mech Min Sci Geomech Abstr. 1996;33(6):641–5.

    Article  Google Scholar 

  • Yang Z, Lee CF, Wang S. Three-dimensional back-analysis of displacements in exploration adits-principles and application. Int J Rock Mech Min Sci. 2000;37(3):525–33.

    Article  Google Scholar 

  • Yang ZF, Wang ZY, Zhang LQ, Zhou RG, Xing NX. Back-analysis of viscoelastic displacements in a soft rock road tunnel. Int J Rock Mech Min Sci. 2001;38(3):331–41.

    Article  Google Scholar 

  • Yi CJ, Lu M. A mixed-integer linear programming approach for temporary haul road design in rough-grading projects. Autom Constr. 2016;71(2):314–24.

    Article  Google Scholar 

  • Yi H, Wanstedt S. The introduction of neural network system and its applications in rock engineering. Eng Geol. 1998;49(3–4):253–60.

    Google Scholar 

  • Yi D, Xu MY, Chen SH. Application of genetic algorithms to back analysis of initial stress field of rock masses. Chin J Rock Mech Eng. 2001;20(Supp. 2):1918–22 (in Chinese).

    Google Scholar 

  • Yi D, Chen SH, Ge XR. A methodology combining genetic algorithm and finite element method for back analysis of initial stress field of rock masses. Rock Soil Mech. 2004a;25(7):1077–80 (in Chinese).

    Google Scholar 

  • Yi D, Xu MY, Chen SH, Ge XR. Application of neural network to back analysis of initial stress field of rock masses. Rock Soil Mech. 2004b;25(6):943–6 (in Chinese).

    Google Scholar 

  • Zeidenberg M. Neural network models in artificial intelligence. New York, USA: Ellis Horwood; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Sh. (2019). Inverse and Feedback Analyses Based on the Finite Element Method. In: Computational Geomechanics and Hydraulic Structures. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-10-8135-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8135-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8134-7

  • Online ISBN: 978-981-10-8135-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics