Skip to main content

Fundamentals of the Composite Element Method

  • Chapter
  • First Online:
  • 730 Accesses

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

Abstract

This chapter summarizes the principles related to the composite element method (CEM), which is one of the most promising computational methods in handling discontinuities, bolts, drainage holes, and cooling pipes explicitly to give their detailed description using simple computation mesh. The FE mesh should be generated beforehand to discretize the structure concerned, where the deployment and size of finite elements are dominated by the structure configuration and the gradient of basic variables (displacement, hydraulic potential, temperature). A certain number of sub-elements representing heterogeneous components (joints, bolts, draining holes, cooling pipes) are allocated within an element (standard or hierarchical) that is named as the composite element. The basic variables within each sub-element are interpolated from the correspondent nodal variables bound at the composite element. According to the virtual work or variational principle, the governing equations are established to solve these basic variables. In this manner, less restraint is imposed on the mesh generation with considerable amount of heterogeneous components, which allows for a great simplification in the pre-process work towards the computation for complex hydraulic structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American Concrete Institute (ACI). Mass concrete. Detroit (USA): ACI Committee 207; 1987.

    Google Scholar 

  • Andersson J, Dverstorp B. Conditional simulation of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res. 1987;23(10):1876–86.

    Article  Google Scholar 

  • Aydan O. The stabilisation of rock engineering structures by rockbolts. Ph.D. thesis, Japan: Nagoya University; 1989.

    Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN. Basic concepts in the theory of seepage of homogenous liquids in fissured rocks. J Appl Math Mech. 1960;24(5):12–8.

    Article  Google Scholar 

  • Bureau of Reclamation. The story of Hoover Dam. Washington DC (USA): BOR; 1971.

    Google Scholar 

  • Cacas MC, Ledoux B, De Marsity G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation, 1. The flow model. Water Res Res. 1990;26(3):479–89.

    Google Scholar 

  • Chen SH, Egger P. Elasto-viscoplastic distinct modelling of bolt in jointed rock masses. In: Yuan JX, editor. Proceedings of computer method and advances in geomechanics. Rotterdam (Netherlands): AA Balkema; 1997. p. 1985–90.

    Google Scholar 

  • Chen SH, Egger P. Three dimensional elasto-viscoplastic finite element analysis of reinforced rock masses and its application. Int J Num Anal Meth Geomech. 1999;23(1):61–78.

    Article  Google Scholar 

  • Chen SH, Feng XM. Composite element model for rock mass seepage flow. J Hydrodyn (Ser. B). 2006;18(2):219–24.

    Google Scholar 

  • Chen SH, Pande GN. Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts. Int J Rock Mech Min Sci Geomech Abstr. 1994;31(3):273–7.

    Article  Google Scholar 

  • Chen SH, Qiang S. Composite element model for discontinuous rock masses. Int J Rock Mech Min Sci Geomech Abstr. 2004;41(7):865–70.

    Article  Google Scholar 

  • Chen SH, Egger P, Migliazza R, Giani GP. Three dimensional composite element modelling of hollow bolt in rock masses. In: Dinis da Gama C, Ribeiro e Sousa L, editors. Proceedings of ISRM international symposium rock engineering mount regions—Eurock’2002. Rotterdam (Netherlands): AA Balkema; 2002. p. 753–9.

    Google Scholar 

  • Chen SH, Zhang GX, Zhu YM. Thermal stresses and temperature control of concrete. In: Zhou JP, Dang LC, editors. Handbook of hydraulic structure design, vol. 5—Concrete Dams (Chapter 6). Beijing (China): China Water Power Press; 2011 (in Chinese).

    Google Scholar 

  • Chen SH, Shahrour I. Composite element method for the bolted discontinuous rock masses and its application. Int J Rock Mech Min Sci. 2008;45(3):384–96.

    Article  Google Scholar 

  • Chen SH, He ZG, Egger P. Study of hollow friction bolts in rock by a three dimensional composite element method. In: Merwe JN, editor. Proceedings of 10th ISRM congress—technology roadmap for rock mechanics. Johannesburg (South Africa): ISRM; 2003. p. 203–6.

    Google Scholar 

  • Chen SH, Qiang S, Chen SF, Egger P. Composite element model of the fully grouted rock bolt. Rock Mech Rock Eng. 2004;37(3):193–212.

    Google Scholar 

  • Chen SH, Xu Q, Hu J. Composite element method for seepage analysis of geotechnical structures with drainage hole array. J Hydrodyn (Ser B). 2004;16(3):260–6.

    MATH  Google Scholar 

  • Chen SH, Qin WX, Xu Q. Composite element method and application of trace simulation for strain localization bands. Chin J Rock Mechan Eng. 2007;26(6):1116–22 (in Chinese).

    Google Scholar 

  • Chen SH, Qiang S, Shahrour I, Egger P. Composite element analysis of gravity dam on a complicated rock foundation. Int J Geomech ASCE. 2008;8(5):275–84.

    Article  Google Scholar 

  • Chen SH, Xue LL, Xu GS, Shahrour I. Composite element method for the seepage analysis of rock masses containing fractures and drainage holes. Int J Rock Mech Min Sci. 2010;47(5):762–70.

    Article  Google Scholar 

  • Chen SH, Su PF, Shahrour I. Composite element algorithm for the thermal analysis of mass concrete: simulation of lift joint. Finite Elem Anal Des. 2011a;47:536–42.

    Article  Google Scholar 

  • Chen SH, Su PF, Shahrour I. Composite element algorithm for the thermal analysis of mass concrete: simulation of cooling pipes. Int J Numer Meth Heat Fluid Flow. 2011b;21(4):434–47.

    Article  Google Scholar 

  • Chen SH, Zhang X, Shahrour I. Composite element model for the bonded anchorage head of stranded wire cable in tension. Int J Num Anal Meth Geomech. 2015;39(12):1352–68.

    Article  Google Scholar 

  • Dershowitz WS, Gordon BM, Kafritsas JC. A new three-dimensional model for flow in fractured rock. In: Proceedings of memoirs of the 17th international cong of IAH, vol. XVII. Tucson, Arizona (USA): IAH; 1985. p. 441–8.

    Google Scholar 

  • Ding JX, Chen SH. Simulation and feedback analysis of the temperature field in massive concrete structures containing cooling pipes. Appl Therm Eng. 2013;61(2):554–62.

    Article  MathSciNet  Google Scholar 

  • Du YL, Xu GA, Huang YH. The study of three-dimensional seepage analysis for the complex rock foundation. J Hydraul Eng. 1984;6(3):1–9 (in Chinese).

    Google Scholar 

  • Du YL, Xu GA, Han LB. Study on applicability of three dimensional method for analysis of seepage in complex rock foundation. Water Resour Hydropower Eng. 1991;1:2–9 (in Chinese).

    Google Scholar 

  • Duiguid JO, Lee PCY. Flow in fractured porous media. Water Resour Res. 1977;13(3):25–8.

    Google Scholar 

  • Fipps G, Skaggs RW, Nieber JL. Drains as a boundary condition in finite elements. Water Resour Res. 1986;22(11):1613–21.

    Article  Google Scholar 

  • Guan JH, Liu JX, Zhu YX. Finite element analysis for an array of wells replaced by a drainage ditch. J Hydraul Eng. 1984;6(3):10–8 (in Chinese).

    Google Scholar 

  • Huang DH, Yang SH. A study on the methods of setting initial temperature on the joint face of roller compacted concrete. J Hydroelectric Eng. 1999;25(3):25–34 (in Chinese).

    Google Scholar 

  • Huyakorn PS, Lester BH, Faust CR. Finite element techniques for modeling groundwater flow in fractured aquifers. Water Resour Res. 1983;19(4):1019–35.

    Article  Google Scholar 

  • Ishikawa M. Thermal stress analysis of concrete dam. Comput Struct. 1991;40(2):347–52.

    Article  Google Scholar 

  • Liu C. Temperature field of mass concrete in a pipe lattice. J Mat Civil Eng ASCE. 2004;16(5):427–32.

    Article  Google Scholar 

  • Liu N, Liu GT. Sub-structural FEM for the thermal effect of cooling pipes in mass concrete structures. J Hydraul Eng. 1997;19(12):43–9 (in Chinese).

    Google Scholar 

  • Liu YJ, Jia LG, Song YS, Xiao SY. Three dimensional thermal resistance element for simulating heat across interface. In: Xu B, Xiao Y, Ru JP, Ren WX, editors. 10th International symposium on structural engineering for young experts. Beijing (China): Science Press; 2008. p. 1970–4.

    Google Scholar 

  • Long JSC. Rock fractures and fluid flow. Washington DC (USA): National Academy Press; 1996.

    Google Scholar 

  • Long JCS, Gilmour P, Witherspoon PA. A method for steady fluid flow in random three-dimensional networks of dice-shaped fractures. Water Resour Res. 1985;21(8):35–40.

    Article  Google Scholar 

  • Lorig LJ. A simple numerical representation of fully bonded passive rock reinforcement for hard rocks. Comput Geotech. 1985;1(6):79–97.

    Article  Google Scholar 

  • Lorig LJ. A hybrid computational model for excavation and support design in jointed media. Ph.D. thesis. University of Minnesota (USA); 1984.

    Google Scholar 

  • Mahtab M, Goodman RE. Three dimensional analysis of joint rock slope. In: Proceedings of 2nd ISRM congress, vol. 3. Beograd (Yugoslavia): Privredni Pregled; 1970. p. 353–60.

    Google Scholar 

  • Malkawi AIH, Mutasher SA, Qiu TJ. Thermal-structural modeling and temperature control of roller compacted concrete gravity dam. J Perform Constructed Facil ASCE. 2003;17(4):177–87.

    Article  Google Scholar 

  • Nordqvist AW, Tsang YW, Tsang CF. A variable aperture fracture network model for flow and transport in fractured rocks. Water Resour Res. 1992;28(6):1703–13.

    Article  Google Scholar 

  • Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resour Res. 1986;22(13):1845–56.

    Article  Google Scholar 

  • Pande GN, Gerrard CM. The behaviour of reinforced jointed rock masses under various simple loading states. In: Proceedings of 5th ISRM congress. Melbourne (Australia): Brown Prior Anderson Pty Ltd.; 1983. F217–23.

    Google Scholar 

  • Sharma KG, Pande GN. Stability of rock masses reinforced by passive, fully-grouted bolts. Int J Rock Mech Min Sci Geomech Abstr. 1988;25(5):273–85.

    Article  Google Scholar 

  • Snow DT. Anisotropic permeability of fractured media. Water Resour Res. 1969;5(6):1273–89.

    Article  Google Scholar 

  • Springenschmid R, Breitenbiicher R, Mangold M. Development of the cracking frame and the temperature-stress testing machine. In: Springenschmid R, editor. Thermal cracking in concrete at early ages, international RILEM symposium. London (UK): CRC Press; 1994. p. 137–44.

    Google Scholar 

  • Streltsova TD. Hydrodynamics of groundwater flow in a fractured formation. Water Resour Res. 1981;17(4):21–6.

    Google Scholar 

  • Swoboda G, Marence M. FEM modelling of rockbolts. In: Proceedings of computer methods and advances in geomechanics. Rotterdam (Netherlands): AA Balkema; 1991. p. 1515–20.

    Google Scholar 

  • Swoboda G, Marence M. Numerical modelling of rock bolts in intersection with fault system. In: Proceedings of numerical models in geomechanics, NUMOG 5. Swansea(UK): Pineridge Press Ltd.; 1992. p. 729–38.

    Google Scholar 

  • Tatro SB, Schrader EK. Thermal analysis for RCC—a practical approach. In: Proceedings roller compacted concrete III. New York (USA): ASCE; 1992. p. 389–406.

    Google Scholar 

  • Tatro SB, Schrader EK. Thermal considerations for roller-compacted concrete. J Am Concr Inst. 1985;82(2):119–28.

    Google Scholar 

  • Toshiaki M, Yasuyuki F, Yoshinori M. Control of thermal cracking by pipe-cooling system in concrete structures. In: Proceedings of JSCE (Japan Society of Civil Engineers); 2000, (665):147–63.

    Google Scholar 

  • Wang L, Liu Z, Zhang YT. Analysis of seepage field near a drainage holes curtain. J Hydraul Eng. 1992;14(4):15–20 (in Chinese).

    Google Scholar 

  • Wang EZ, Wang HT, Deng XD. Pipe to represent hole–numerical method for simulating single drainage hole in rock masses. Chin J Rock Mech Eng. 2001;20(3):346–9 (in Chinese).

    MathSciNet  Google Scholar 

  • Wilson CR, Witherspoon PA. Steady state flow in rigid networks of fractures. Water Resour Res. 1974;10(2):328–35.

    Article  Google Scholar 

  • Xu GS, Chen SH. Unconfined seepage analysis with composite element method. Rock Soil Mech. 2005;26(5):745–9 (In Chinese).

    Google Scholar 

  • Zhang Z, Garga VK. Temperature and temperature induced stresses for RCC dams. Dam Eng. 1996;7(4):336–50.

    Google Scholar 

  • Zhu BF. The analysis of the effect of drainage holes in the seepage field by means of hybrid elements. J Hydraul Eng. 1982;4(9):32–41 (in Chinese).

    Google Scholar 

  • Zhu BF. Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling. J Hydraul Eng. 1991;13(3):28–34 (in Chinese).

    Google Scholar 

  • Zhu BF. Thermal stresses and temperature control of mass concrete. Beijing (China): China Electric Power Press; 1998 (in Chinese).

    Google Scholar 

  • Zhu BF. Current situation and prospect of temperature control and cracking prevention technology for concrete dam. J Hydraul Eng. 2006;28(12):1424–32 (in Chinese).

    Google Scholar 

  • Zhu BF, Cai JB. Finite element analysis of effect of pipe cooling in concrete dams. J Constr Eng Manag ASCE. 1989;115(4):487–98.

    Article  Google Scholar 

  • Zhu YM, Zhang JB. Study on application of water cooling pipe measures to RCCDs thermal control during continuous construction in high-temperature seasons. J Hydraul Eng. 2002;24(11):55–9 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Sh. (2019). Fundamentals of the Composite Element Method. In: Computational Geomechanics and Hydraulic Structures. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-10-8135-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8135-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8134-7

  • Online ISBN: 978-981-10-8135-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics