Environmental Toxicity and Evaluation

  • Lee Yook Heng
  • Lia Ooi
  • Izumi C. Mori
  • Dedi Futra


The basic concept of environmental toxicity and its importance in the evaluation of ecosystem health will be introduced. Toxicity evaluation theory and practice will be briefly discussed. Traditional techniques such as bioassays for environmental toxicity evaluation will be introduced where the advantages and disadvantages will be presented. But the main focus of environmental toxicity evaluation will be on the use of more recent techniques for rapid environmental toxicity assessments such as toxicity biosensor and its basic concept, current applications, and future prospects.


Environmental toxicity Toxicity measurement Environmental security Bioassay Toxicity biosensor 


  1. Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805CrossRefGoogle Scholar
  2. Alkassasbeh JYM, Heng LY, Surif S (2009) Toxicity testing and the effect of landfill leachate in Malaysia on behavior of common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Am J Environ Sci 5:209–217CrossRefGoogle Scholar
  3. Arcand-Hoy LD, Benson WH (1998) Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem 17:49–57CrossRefGoogle Scholar
  4. Arip MNM, Heng LY, Ahmad M, Ujang S (2013) A cell-based potentiometric biosensor using the fungus Lentinus sajor-caju for permethrin determination in treated wood. Talanta 116:776–781CrossRefGoogle Scholar
  5. Baillieul M, Blust R (1999) Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquat Toxicol 44:245–254CrossRefGoogle Scholar
  6. Balon EK (1995) Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129:3–48CrossRefGoogle Scholar
  7. Belkin S (2006) Genetically engineered microorganisms for pollution monitoring. In: Soil and water pollution monitoring, protection and remediation, vol 3–23. Springer, Dordrecht, pp 147–160CrossRefGoogle Scholar
  8. Binetti R, Costamagna FM, Marcello I (2008) Exponential growth of new chemicals and evolution of information relevant to risk control. Ann Ist Super Sanita 44:13–15Google Scholar
  9. Budi S, Suliasih BA, Othman MS, Heng LY, Surif S (2015) Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manag 55:231–237. Available onlineCrossRefGoogle Scholar
  10. Cairns J, Mount DI (1990) Aquatic toxicology. Environ Sci Technol 24:154–161CrossRefGoogle Scholar
  11. Carson R (2002) Silent spring, 40th edn. Houghton Mifflin Harcourt, BostonGoogle Scholar
  12. Casarett LJ, Doull J, Klaassen CD (2001) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  13. Chia-nan (2015) Auspicious fish, encyclopedia of carp. Chinese National Geography. 25 Sept 2015 (in Chinese)
  14. Chiappini SA, Kormesa DJ, Bonetto MC, Sacco N, Cortón E (2010) A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sensors Actuators B 148:103–109CrossRefGoogle Scholar
  15. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353CrossRefGoogle Scholar
  16. DEFRA (2011) In: Evans J, Galson D, Hennessey E (eds) Guidelines for environmental risk assessment and management: green leaves III. Department for Environment, Food and Rural Affairs, LondonGoogle Scholar
  17. Djuric D (2015) Chapter 33: Toxicology: Toxicokinetics. Encyclopaedia of occupational health and safety,. International Labour Office. Retrieved from 24 Sept 2015
  18. Dunnett CW (1955) Multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  19. EHS (2002) Toxicology and Exposure Guidelines. University of Nebraska Lincoln (UNL) Environ Health Saf 402:472–4925Google Scholar
  20. Eltzov E, Yehuda A, Marks RS (2015) Creation of a new portable biosensor for water toxicity determination. Sensors Actuators B 221:1044–1054CrossRefGoogle Scholar
  21. Fort DJ, Stover EL, Bantle JA, Dumont JN, Finch RA (2001) Evaluation of a reproductive toxicity assay using Xenopus laevis: boric acid, cadmium and ethylene glycol monomethyl ether. J Appl Toxicol 21(1):41–52CrossRefGoogle Scholar
  22. Futra D, Heng LY, Surif S, Ahmad A, Ling TL (2014) Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors 14:23248–23268CrossRefGoogle Scholar
  23. Futra D, Heng LY, Ahmad A, Surif S, Ling TL (2015) An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities. Sensors 15:12668–12681CrossRefGoogle Scholar
  24. Hachiya N (2006) The history and the present of Minamata disease -entering the second half a century. Jpn Med Assoc J 49:112–118Google Scholar
  25. Harteis S, Schneider S (2014) Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 15(7):12335–12363CrossRefGoogle Scholar
  26. Juahir H, Zain SM, Yusoff MK, Hanidza TIT, Armi ASM, Toriman ME, Mokhtar M (2011) Spatial water quality assessment of Langat River basin (Malaysia) using environmetric techniques. Environ Monit Assess 173(1–4):625–641CrossRefGoogle Scholar
  27. Keddy CJ, Greene JC, Bonnell MA (1995) Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxol Environ Saf 30:221–251CrossRefGoogle Scholar
  28. Kerman K, Kobayashi M, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1–R11CrossRefGoogle Scholar
  29. Knight G, Riesenberger JR (2014) International business: the new realities, 2nd edn. Pearson Australia, MelbourneGoogle Scholar
  30. Kohlmann K, Gross R, Murakaeva A, Kersten P (2003) Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA marker. Aquat Living Resour 16:421–431CrossRefGoogle Scholar
  31. Krewski D, Westphal M, Al-Zoughool M, Croteau MC, Andersen ME (2011) New directions in toxicity testing. Annu Rev Public Health 32:161–178CrossRefGoogle Scholar
  32. Kyoda (2012) Toyama concludes cadmium cleanup. The Japan Times. Retrieved from URL. 24 Aug 2015
  33. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210CrossRefGoogle Scholar
  34. Malandain C, Fayolle F, Bedouelle H (2005) Biosensor for the environmental. Oil and Gas Sci Technol Rev 60:887–897CrossRefGoogle Scholar
  35. METI (2013) Algal growth inhibition test, Daphnia acute immobilization test, and fish acute toxicity test. 15 Feb 2015
  36. MOE (2002) Minamata disease: the history and measures. Environmental Health Department of Ministry of the Environment, Government of Japan. 10 Feb 2015
  37. Monosson E (2008) Bhopal, India, topics; environmental health. Retrieved from [24 Aug 2015]
  38. Monosson E (2013) Toxicity. The Encyclopedia of Earth. Topics; Environmental Health Ecotoxicology Petroleum. Retrieved from 24 Aug 2015
  39. Mori IC, Arias-Barreiro CR, Koutsaftis A, Ogo A, Kawano T, Yoshizauka K, Inayat-Hussain SH, Aoyama I (2015) Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide. Chemosphere 120:299–304CrossRefGoogle Scholar
  40. Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides. Ecotoxicol Environ Saf 72:316–320CrossRefGoogle Scholar
  41. NRC (1996) Risk assessment in the federal government: managing the process. In: Grossblantt N (ed) Environment: science and policy for sustainable development, 13th edn. National Academy of Sciences, Washington, DCGoogle Scholar
  42. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. Alttox.Org. The National Academies Press, Washington, DCGoogle Scholar
  43. OECD (1992) OECD guideline for testing of chemicals test guideline 203 Fish, Acute Toxicity Test. 24 Sept 2015
  44. Ooi L, Heng LY, Mori IC (2015a) A high-throughput oxidative stress biosensor based on Escherichia coli roGFP2 cells immobilized in a k-Carrageenan matrix. Sensors 15(2):2354–2368CrossRefGoogle Scholar
  45. Ooi L, Heng LY, Ahmad A (2015b) Toxicity biosensor for sodium dodecyl sulfate using immobilized green fluorescent protein expressing Escherichia coli. J Sens 2015:1–9CrossRefGoogle Scholar
  46. Paull J (2013). The Rachel Carson letters and the making of silent spring. SAGE Open, 3 July–September, pp 1–12CrossRefGoogle Scholar
  47. Rasnake J (2009) Metal in medicine and the environment; Itai-Itai disease: a puzzling example of metal toxicity. University of Virginia. Retrieved from 8 Sept 2015
  48. Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222–231CrossRefGoogle Scholar
  49. RSC (2013) Environmental risk assessment. Royal Society of Chemistry. Retrieved from Assessment Version 2_tcm18–236384.pdf. 25 Oct 2015
  50. Schenkmayerova A, Bertokova A, Sefcovicova J, Štefuca V, Bucko M, Vikartovská A, Gemeiner P, Tkác J, Katrlík J (2015) Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring. Anal Chim Acta 854:140–144CrossRefGoogle Scholar
  51. Shin HJ (2011) Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 89:867–877CrossRefGoogle Scholar
  52. Shukor MN, Samat A, Ahmad AK, Ruziaton J (2008) Comparative analysis of length-weight relationship of Rasbora sumatrana in relation to the physicochemical characteristics in different geographical areas in peninsular malaysia. Malaysian Appl Biol J 37:21–29Google Scholar
  53. Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity; new developments in whole cell biosensors. Curr Opin Biotechnol 17:11–16CrossRefGoogle Scholar
  54. Souiri M, Gammoudi I, Mora L, Ouada HB, Jouenne T, Jaffrézic-Renault N, Dejous C, Othmane A, Duncan AC (2012) A novel 3-D Nano-assembly bacteria based biosensor for enhanced detection of heavy metal pollutants. J Environ Sci Eng A 1:924–935Google Scholar
  55. Spies RB, Stegeman JJ, Hinton DE, Wooding B, Smolowits R, Okihiro M, Shea D (1996) Biomarkers of hydrocarbon exposure and sublethal effects in embiotocid fishes from a natural petroleum seep in the Santa Barbara Channel. Aquat Toxicol 34:195–219CrossRefGoogle Scholar
  56. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefGoogle Scholar
  57. Suliasih BA, Othmann MS, Heng LY, Salmijah S (2010) Toxicity identification evaluation of landfill leachate taking a multispecies approach. WIT Trans Ecol Environ 140:311–322CrossRefGoogle Scholar
  58. Tekaya N, Saiapina O, Ouada HB, Lagarde F, Ouada HB, Jaffrezic-Renault N (2013) Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira Platensis. Bioelectrochemistry 90:24–29CrossRefGoogle Scholar
  59. Tongbai W, Boonplueng R, Damronghol P (2012) Enzymatic responses of the riceland prawn, Macrobrachium lanchesteri, to chlorpyrifos exposure. Biologia 67:762–766CrossRefGoogle Scholar
  60. Truhaut R (1977) Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf 1(2):151–173CrossRefGoogle Scholar
  61. U.S. National Park Service (2015) History of common carp in North America. Retrieved from 2 Sept 2015
  62. USEPA (1978) Bioassay for toxic and hazardous materials. Training manual. United States (U.S.) Environmental Protection Agency, EPA-430/1-78-001, Washington, DCGoogle Scholar
  63. USEPA (1991) Methods for aquatic toxicity identification evaluations phase I toxicity characterization procedures, 2th edn. United States (U.S.) Environmental Protection Agency, Washington, DCGoogle Scholar
  64. USEPA (1993) Toxicity identification procedures for samples exhibiting acute and chronic toxicity: phase II methods for aquatic toxicity identification evaluations, 2th edn. United States (U.S.) Environmental Protection Agency, Washington, DCGoogle Scholar
  65. USEPA (2015a) Risk assessment. United States (U.S.) Environmental Protection Agency, Washington, DCGoogle Scholar
  66. USEPA (2015b) Clean water act analytical methods: whole effluent toxicity methods. United States (U.S.) Environmental Protection Agency, Washington, DCGoogle Scholar
  67. USEPA (2015c) Clean water act analytical methods: acute toxicity WET methods. United States (U.S.) Environmental Protection Agency, Washington, DCGoogle Scholar
  68. Waite CP, Patty FA, Yant WP (1930) Acute response of Guinea pigs to vapors of some new commercial organic compounds: V. Vinyl chloride. Public Health Rep 45:1896–1970Google Scholar
  69. WHO (2004) Vinyl chloride in drinking-water. World Health Organization, GenevaGoogle Scholar
  70. Wong LS, Lee YH, Surif S (2013a) Whole cell biosensor using Anabaena torulosa with optical transduction for environmental toxicity evaluation. J Sens 2013:1–8CrossRefGoogle Scholar
  71. Wong LS, Lee YH, Surif S (2013b) Performance of a cyanobacteria whole cell-based fluorescence biosensor for heavy metal and pesticide detection. Sensors 13:6394–6404CrossRefGoogle Scholar
  72. Yu D, Volponi J, Chhabra S, Brinker CJ, Mulchandani A, Singh AK (2005) Aqueous sol–gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosens Bioelectron 20:1433–1437CrossRefGoogle Scholar
  73. ZipcodZoo (2015) ZipcodeZoo, the free nature encyclopedia. CritterID:522448. Retrieved from 4 Sept 2015

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lee Yook Heng
    • 1
  • Lia Ooi
    • 1
    • 2
  • Izumi C. Mori
    • 2
  • Dedi Futra
    • 1
  1. 1.Faculty of Science and TechnologyNational University of MalaysiaBangiMalaysia
  2. 2.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan

Personalised recommendations