Skip to main content

Biopolymer-Directed Magnetic Composites

  • Chapter
  • First Online:
Biological Magnetic Materials and Applications

Abstract

The question investigated in this chapter is: Can a material obtain the advantageous material properties of multiple biominerals, when the structural elements in each model biomineral, which are responsible for these properties, are combined into one new bioinspired material? Drawing inspiration from the natural biominerals nacre, chiton teeth, and bacterial magnetosomes, a model material, containing a magnetite-gelatin composite, filling a layered scaffold extracted from natural nacre, can be synthesized.

The biopolymer gelatin has a distinct influence on the size and shape of magnetite mineralized at ambient conditions. In the gel state, gelatin can be mineralized to form superpara- and ferrimagnetic gels with tunable particle size. The ferrogel synthesis can also be transferred into demineralized nacre scaffolds, yielding layered hybrid composites.

Besides more common analytical methods, SANS is used to investigate the structure of organic and inorganic phases individually, and molecular simulations following the Kawska-Zahn approach are employed to gain insight into the earliest stages of nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 μL/min of 1 M FeCl2/3 solution into 10 mL gelatin solution with set pH.

  2. 2.

    10 mL/min of 1 M FeCl2/3 solution into 10 mL gelatin solution with set pH.

  3. 3.

    The Verwey transition is a crystallographic transition observed in magnetite, associated with changes in remanence, coercivity, and susceptibility (Walz 2002).

References

  • Ames W (1947) Heat degradation of gelatin. J Soc Chem Ind 66:279–284

    Article  CAS  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  CAS  PubMed  Google Scholar 

  • Asenath-Smith E, Li H, Keene EC, Seh ZW, Estroff LA (2012) Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Adv Funct Mater 22:2891–2914

    Article  CAS  Google Scholar 

  • Barber AH, Lu D, Pugno NM (2015) Extreme strength observed in limpet teeth. J R Soc Interf 12

    Google Scholar 

  • Bäuerlein E (2008) Handbook of biomineralization: biological aspects and structure formation. Wiley, Weinheim

    Google Scholar 

  • Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013a) Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 8:e57070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013b) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314

    Article  CAS  PubMed  Google Scholar 

  • Brodsky PB, Werkmeister JA, Ramshaw JAM, (2004) Collagens and gelatins. In: Fahnestock S, SteinbĂĽchel A (ed) Biopolymers: polyamides and complex proteinaceous materials II, vol 8. WILEY-VCH

    Google Scholar 

  • Burleson DJ, Penn RL (2006) Two-step growth of goethite from ferrihydrite. Langmuir 22:402–409

    Article  CAS  PubMed  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Currey JD (1977) Mechanical-properties of mother of pearl in tension. Proc R Soc Ser B-Bio 196:443–436

    Article  Google Scholar 

  • Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518

    Article  CAS  PubMed  Google Scholar 

  • Faivre D, SchĂĽler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898

    Article  CAS  PubMed  Google Scholar 

  • Goya GF, BerquĂł TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520

    Article  CAS  Google Scholar 

  • Heinemann F, Launspach M, Gries K, Fritz M (2011) Gastropod nacre: structure, properties and growth—biological, chemical and physical basics. Biophys Chem 153:126–153

    Article  CAS  PubMed  Google Scholar 

  • Heiss A, Jahnen-Dechent W, Endo H, Schwahn D (2007) Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2:16–20

    Article  CAS  PubMed  Google Scholar 

  • Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Cölfen H (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater 24:3187–3196. excerpt figures shown are licensed under CC BY-NC-ND 3.0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolivet JP, Vayssieres L, Chaneac C, Tronc E (1996) Precipitation of spinel iron oxide: nanoparticle size control. MRS Online Proc Libr 432:145–150

    Google Scholar 

  • Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and Îł-Fe2O3 particles. Chem Mater 8:2209–2211

    Article  CAS  Google Scholar 

  • Kniep R, Simon P (2007) Fluorapatite-gelatine-nanocomposites: self-organized morphogenesis, real structure and relations to natural hard materials In: Naka K (ed) Biomineralization I, vol 270. Springer, Berlin, pp 73–125

    Google Scholar 

  • Lemaire BJ, Davidson P, Ferre J, Jamet JP, Panine P, Dozov I, Jolivet JP (2002) Outstanding magnetic properties of nematic suspensions of goethite (alpha-FeOOH) nanorods. Phys Rev Lett 88:125507

    Article  CAS  PubMed  Google Scholar 

  • Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a Bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xin HL, Muller DA, Estroff LA (2009) Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA (1971) Opal precipitation by marine gastropods (Mollusca). Science 171:487–490

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Perry CC, Webb J, Luke B, Williams RJP (1986) Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc R Soc Lond Ser B Biol Sci 227:179–190

    Article  CAS  Google Scholar 

  • Mao LB, Gao HL, Yao HB, Liu L, Colfen H, Liu G, Chen SM, Li SK, Yan YX, Liu YY, Yu SH (2016) Synthetic nacre by predesigned matrix-directed mineralization. Science 354:107–110

    Article  CAS  PubMed  Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520

    Article  CAS  PubMed  Google Scholar 

  • Niederberger M, Colfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    Article  CAS  PubMed  Google Scholar 

  • Nudelman F, Shimoni E, Klein E, Rousseau M, Bourrat X, Lopez E, Addadi L, Weiner S (2008) Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryo-scanning electron microscopy study. J Struct Biol 162:290–300

    Article  CAS  PubMed  Google Scholar 

  • Ă–zdemir Ă–, Dunlop DJ, Moskowitz BM (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20:1671–1674

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971

    Article  CAS  PubMed  Google Scholar 

  • Penn RL, Soltis JA (2014) Characterizing crystal growth by oriented aggregation. Cryst Eng Comm 16:1409–1418

    Article  CAS  Google Scholar 

  • Pereira-Mouriès L, Almeida M-J, Ribeiro C, Peduzzi J, BarthĂ©lemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003

    Article  CAS  PubMed  Google Scholar 

  • Pipich V, Balz M, Wolf SE, Tremel W, Schwahn D (2008) Nucleation and growth of CaCO3 mediated by the egg-white protein ovalbumin: a time-resolved in situ study using small-angle neutron scattering. J Am Chem Soc 130:6879–6892

    Article  CAS  PubMed  Google Scholar 

  • Pouradier J, Venet AM (1952) The structure of gelatins. V. Degradation of gelatin in isoelectric solution. J Chim Phys Physicochim Biol 49:239–244

    CAS  Google Scholar 

  • Reinhard Schrieber HG (2007) Gelatine handbook. WILEY-VCH, Weinheim

    Google Scholar 

  • Roe RJ (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, New York

    Google Scholar 

  • Saunders M, Kong C, Shaw JA, Macey DJ, Clode PL (2009) Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa. J Struct Biol 167:55–61

    Article  CAS  PubMed  Google Scholar 

  • Siglreitmeier M (2015) PhD thesis, University of Konstanz

    Google Scholar 

  • Siglreitmeier M, Wu B, Kollmann T, Neubauer M, Nagy G, Schwahn D, Pipich V, Faivre D, Zahn D, Fery A, Cölfen H (2015) Multifunctional layered magnetic composites. Beilstein J Nanotechnol 6:134–148. excerpt figures shown are licensed under CC BY 2.0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson ET, Kasama T, PĂłsfai M, Buseck PR, Harrison RJ, Dunin-Borkowski RE (2005) Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J Phys Conf Ser 17:108

    Article  CAS  Google Scholar 

  • Sugimoto T, Matijević E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Sci 74:227–243

    Article  CAS  Google Scholar 

  • Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80A:333–341

    Article  CAS  Google Scholar 

  • Taylor RM, Barbara, Self P (1987) Magnetite in soils; I, The synthesis of single-domain and superparamagnetic magnetite. Clay Miner 22:411–422

    Article  CAS  Google Scholar 

  • Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  CAS  Google Scholar 

  • Tewari PH, McLean AW (1972) Temperature dependence of point of zero charge of alumina and magnetite. J Colloid Interface Sci 40:267–272

    Article  CAS  Google Scholar 

  • Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R (2006) Biomimetic fluorapatite–gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem Int Ed 45:1905–1910

    Article  CAS  Google Scholar 

  • Vayssières L, ChanĂ©ac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interface Sci 205:205–212

    Article  PubMed  Google Scholar 

  • Vereda F, de Vicente J, Morales MDP, Rull F, Hidalgo-Alvarez R (2008) Oxidation of ferrous hydroxides with nitrate: a versatile method for the preparation of magnetic colloidal particles. J Phys Chem C 112:5843–5849

    Article  CAS  Google Scholar 

  • Vereda F, de Vicente J, Hidalgo-Alvarez R (2013) Synthesis and characterization of single-domain monocrystalline magnetite particles by oxidative aging of Fe(OH)2. J Colloid Interface Sci 392:50–56

    Article  CAS  PubMed  Google Scholar 

  • VergĂ©s MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D Appl Phys 41:134003

    Article  CAS  Google Scholar 

  • Walz F (2002) The Verwey transition – a topical review. J Phys Condens Matter 14:R285

    CAS  Google Scholar 

  • Wandrey C, Bartkowiak A, Harding SE (2010) Materials for Encapsulation. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer New York, New York, pp 31–100

    Google Scholar 

  • Weaver JC, Wang QQ, Miserez A, Tantuccio A, Stromberg R, Bozhilov KN, Maxwell P, Nay R, Heier ST, DiMasi E, Kisailus D (2010) Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater Today 13:42–52

    Article  CAS  Google Scholar 

  • Wu B (2015) Bio-inspired Magnetite Mineralization in Gelatin Hydrogels: A Small Angle Scattering Investigation. PhD thesis, Universität Konstanz

    Google Scholar 

  • Xu AW, Ma YR, Colfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the DFG priority program “Multifunctional Layered Magnetite Composites” (SPP1569). We want to thank Dirk Zahn and Tina Kollmann from the University of Erlangen for the simulation studies; Baohu Wu, Vitaliy Pipich, and Dietmar Schwahn from JCNS/MLZ for the scattering studies; and Damien Faivre from MPI Golm for support with the material design and early magnetite syntheses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Cölfen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debus, C., Siglreitmeier, M., Cölfen, H. (2018). Biopolymer-Directed Magnetic Composites. In: Matsunaga, T., Tanaka, T., Kisailus, D. (eds) Biological Magnetic Materials and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8069-2_8

Download citation

Publish with us

Policies and ethics