Skip to main content

Biogenic and Bio-inspired Syntheses of Hierarchically Structured Iron Compounds for Lithium-Ion Batteries

  • Chapter
  • First Online:
Biological Magnetic Materials and Applications
  • 571 Accesses

Abstract

This chapter shows biogenic and bio-inspired syntheses of hierarchically structured iron compounds for lithium-ion batteries. Iron-reducing bacteria produce spherical microparticles consisting of iron(II) phosphate nanosheets. Lithium iron phosphate (LiFePO4) with a hierarchical morphology including a high specific surface area is obtained from biogenic iron(II) phosphate via a hydrothermal reaction. The biogenic iron(II) phosphate and microbially derived LiFePO4 show reversible charge-discharge performance as anodes and cathodes of lithium-ion batteries, respectively. The precursors of γ- and α-FeOOH with a high specific surface area are prepared through a microbial-mineralization-inspired approach in aqueous solutions. Subsequent thermal treatment under tuned conditions facilitates the syntheses of γ- and α-Fe2O3 without the collapse of the hierarchical structures and the high specific surface area. The resultant iron compounds are applicable for the electrodes of lithium-ion batteries, adsorbents, and catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB- 1. J Biol Chem 278:8745

    Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977

    Google Scholar 

  • Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652

    Google Scholar 

  • Azam HM, Finneran KT (2014) Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1

    Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751

    Google Scholar 

  • Bernardi D, Newman J (1987) Mathematical-modeling of lithium (alloy), iron disulfide cells. J Electrochem Soc 134:1309

    Google Scholar 

  • Brezesinski T, Groenewolt M, Antonietti M, Smarsly B (2006) Crystal-to-crystal phase transition in self-assembled mesoporous iron oxide films. Angew Chem Int Ed 45:781

    Google Scholar 

  • Chang Y-C, Lee C-Y, Chiu H-T (2014) Porous inorganic materials from living porogens: channel-like TiO2 from yeast-assisted sol-gel process. ACS Appl Mater Interfaces 6:31

    Google Scholar 

  • Cherian CT, Sundaramurthy J, Kalaivani M, Ragupathy P, Kumar PS, Thavasi V, Reddy MV, Sow CH, Mhaisalkar SG, Ramakrishna S, Chowdari BVR (2012) Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22:12198

    Google Scholar 

  • Cherian CT, Sundaramurthy J, Reddy MV, Kumar PS, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BVR (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Wiley-VCH, Weinheim

    Google Scholar 

  • Cudennec Y, Lecerf A (2005) Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. J Solid State Sci 7:520

    Google Scholar 

  • Das B, Reddy MV, Chowdari BVR (2013) Li-storage of Fe3O4/C composite prepared by one-step carbothermal reduction method. J Alloy Compd 565:90

    Google Scholar 

  • Ema T, Miyazaki Y, Kozuki I, Sakai T, Hashimoto H, Takada J (2011) Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: the dramatic effect of the immobilization support on enzymatic function. Green Chem 13:3187

    Google Scholar 

  • Fortin D, Langley S (2005) Formation and occurrence of biogenic iron-rich minerals Earth. Sci Rev 72:1

    Google Scholar 

  • Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A 100:5597

    Google Scholar 

  • Ghiorse WC (1984) Biology of iron-depositing and manganese-depositing bacteria. Annu Rev Microbiol 38:515

    Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834

    Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841

    Google Scholar 

  • Hashimoto H, Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Nakanishi M, Murakami R (2007) Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater 310:2405

    Google Scholar 

  • Hashimoto H, Kobayashi G, Sakuma R, Fujii T, Hayashi N, Suzuki T, Kanno R, Takano M, Takada J (2014) Bacterial nanometric amorphous Fe- based oxide: a potential lithium-ion battery anode material. ACS Appl Mater Interfaces 6:5374

    Google Scholar 

  • He W, Zhang X, Du X, Zhang Y, Yue Y, Shen J, Li M (2013) Bio-assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium- ion batteries. Electrochim Acta 112:295

    Google Scholar 

  • Hibino M, Terashima J, Yao T (2007) Reversible and rapid discharge-charge performance of γ-Fe2O3 prepared by aqueous solution method as the cathode for lithium-ion battery. J Electrochem Soc 154:A1107

    Google Scholar 

  • Hu J, Chen GH, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709

    Google Scholar 

  • Huang X, Guan JG, Xiao ZD, Tong GX, Mou FZ, Fan XA (2011) Flower-like porous hematite nanoarchitectures achieved by complexationmediated oxidation-hydrolysis reaction. J Colloid Interface Sci 357:36

    Google Scholar 

  • Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549

    Google Scholar 

  • Jiao F, Harrison A, Jumas JC, Chadwick AV, Kockelmann W, Bruce PG (2006) Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc 128:5468

    Google Scholar 

  • Kageyama H, Hashimoto Y, Oaki Y, Saito S, Konishi Y, Imai H (2015) Application of biogenic iron phosphate for lithiumion batteries. RSC Adv 5:68751

    Google Scholar 

  • Kanazawa A, Kanaoka S, Yagita N, Oaki Y, Imai H, Oda M, Arakaki A, Matsunaga T, Aoshima S (2012) Biologically synthesized or bioinspired process-derived iron oxides as catalysts for living cationic polymerization of a vinyl ether. Chem Commun 48:10904

    Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611

    Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91

    Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4- ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24

    Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744

    Google Scholar 

  • Langley S, Igric P, Takahashi Y, Sakai Y, Fortin D, Hannington MD, Schwarz-Schampera U (2009) Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean. Geobiology 7:35

    Google Scholar 

  • Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon J-M (2003) Combined XRD, EXAFS, and mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643

    Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219

    Google Scholar 

  • Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885

    Google Scholar 

  • Nelson YM, Lion LW, Ghiorse WC, Shuler ML (1999) Production of biogenic Mn oxides by Leprothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175

    Google Scholar 

  • Nishina Y, Hashimoto H, Kimura N, Miyata N, Fujii T, Ohtani B, Takada J (2012) Biogenic manganese oxide: effective new catalyst for direct bromination of hydrocarbons. RSC Adv 2:6420

    Google Scholar 

  • Oaki Y, Imai H (2007a) One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew Chem Int Ed 2007(46):4951

    Google Scholar 

  • Oaki Y, Imai H (2007b) Chelation-mediated aqueous synthesis of metal oxyhydroxide and oxide nanostructures: combination of ligand-controlled oxidation and ligandcooperative morphogenesis. Chem Eur J 13:8564

    Google Scholar 

  • Oaki Y, Yagita N, Imai H (2012) One-pot aqueous solution syntheses of iron oxide nanostructures with controlled crystal phases through a microbial-mineralization-inspired approach. Chem Eur J 18:110

    Google Scholar 

  • Oba M, Oaki Y, Imai H (2010) A Microbial-mineralization-inspired aproach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies. Adv Funct Mater 20:4279

    Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Google Scholar 

  • Petnikota S, Marka SK, Banerjee A, Reddy MV, Srikanth VVSS, Chowdari BVR (2015) Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. J Power Sources 293:253

    Google Scholar 

  • Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792

    Google Scholar 

  • Reddy MV, GVS R, BVR C (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364

    Google Scholar 

  • Salah AA, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692

    Google Scholar 

  • Shim H-W, Park S, Song HJ, Kim J-C, Jang E, Hong KS, Kim TD, Kim D-W (2015) Biomineralized multifunctional magnetite/carbon microspheres for applications in Li-ion batteries and water treatment. Chem Eur J 21:4655

    Google Scholar 

  • Son D, Kim E, Kim T-G, Kim MG, Cho J, Park B (2004) Nanoparticle iron-phosphate anode material for Li-ion battery. Appl Phys Lett 85:5875

    Google Scholar 

  • Taberna L, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567

    Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131

    Google Scholar 

  • Tao X, Wu R, Xia Y, Huang H, Chai W, Feng T, Gan Y, Zhang W (2014a) Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl Mater Interfaces 6:3696

    Google Scholar 

  • Tao X, Zhang J, Xia Y, Huang H, Du J, Xiao H, Zhang W, Gan Y (2014b) Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J Mater Chem A 2:2290

    Google Scholar 

  • Tao X, Chai W, Xu F, Luo J, Xiao H, Liang C, Gan Y, Huang H, Xia Y, Zhang W (2015) Bio-templated fabrication of highly defective carbon anchored MnO anode materials with high reversible capacity. Electrochim Acta 169:159

    Google Scholar 

  • Tartaj P, Amarilla JM (2011) Iron oxide porous nanorods with different textural properties and surface composition: preparation, characterization and electrochemical lithium storage capabilities. J Power Sources 196:2164

    Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421

    Google Scholar 

  • Thackeray MM, David WIF, Goodenough JB (1982) Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2). Mater Res Bull 17:785

    Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415

    Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649

    Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2005) Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environ Sci Technol 39:569

    Google Scholar 

  • Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752

    Google Scholar 

  • Wu B, Song H, Zhou J, Chen X (2011) Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem Commun 47:8653

    Google Scholar 

  • Xia Y, Zhang W, Huang H, Gan Y, Xiao Z, Qian L, Tao X (2011) Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J Mater Chem 21:6498

    Google Scholar 

  • Xia Y, Zhang W, Xiao Z, Huang H, Zeng H, Chen X, Chen F, Gan Y, Tao X (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209

    Google Scholar 

  • Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083

    Google Scholar 

  • Yagita N, Oaki Y, Imai H (2013) A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area. Chem Eur J 19:4419

    Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195

    Google Scholar 

  • Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269

    Google Scholar 

  • Zhong Z, Ho J, Teo J, Shen S, Gedanken A (2007) Synthesis of porous α-Fe2O3 nanorods and deposition of very small gold particles in the pores for catalytic oxidation of CO. Chem Mater 19:4776

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imai, H. (2018). Biogenic and Bio-inspired Syntheses of Hierarchically Structured Iron Compounds for Lithium-Ion Batteries. In: Matsunaga, T., Tanaka, T., Kisailus, D. (eds) Biological Magnetic Materials and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8069-2_7

Download citation

Publish with us

Policies and ethics