Automatic Identification and Classification of Microaneurysms, Exudates and Blood Vessel for Early Diabetic Retinopathy Recognition

  • Vaibhav V. KambleEmail author
  • Rajendra D. Kokate
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 711)


Diabetic retinopathy (DR) is vital concern that leads to blindness in adults around the world. In this paper, we proposed a system for early identification and classification of retinal fundus images as DR or non-DR. The ophthalmic features like blood vessels, microaneurysms and exudates are extracted and calculated by applying morphological of 2D median filter, multilevel histogram analysis and intensity transformation, respectively. The proposed system is executed on DIARETDB0 130 and DIARETDB1 89 fundus images dataset using artificial neural networks (ANNs). Result analysis is completed by calculating mean, variance, standard deviation, and correlation. We trained the proposed system model by multilayer perceptron with back-propagation, and system achieved sensitivity 0.83 and specificity 0.045 for DIARETDB0 and sensitivity 0.95 and specificity 0.2 for DIARETDB1.


Diabetic retinopathy Blood vessels Microaneurysms Exudates Tortuosity ANN Fundus images 


  1. 1.
    Book: A K Khurana;Comprehensive Opthalmology.Google Scholar
  2. 2.
    M. R. Krishnan Mookiah, U. R. Acharya, C. K. Chua, C. M. Lim, E.Y.K. Ng, A. Laude; Computer-aided diagnosis of diabetic retinopathy: A review; Computers in Biology and Medicine 43 (2013)2136–2155.CrossRefGoogle Scholar
  3. 3.
    Bo Wu, W. Zhu, Fei Shi, S. Zhu, X. Chen; Automatic detection of microaneurysms in retinal fundus images; Computerized Medical Imaging and Graphics 55 (2017) 106–112.CrossRefGoogle Scholar
  4. 4.
    Roberto R. R., Jorge M-C., Jonathan H-C., Laura J. Uribe V.; A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images; Computerized Medical Imaging and Graphics 44 (2015) 41–53.CrossRefGoogle Scholar
  5. 5.
    P N Sharath K., Deepak R U, A. Sathar, Sahasranamam V, Rajesh K. R; Automated Detection System for Diabetic Retinopathy Using Two Field Fundus Photography; Procedia Computer Science 93 (2016) 486–494.Google Scholar
  6. 6.
    R. Dhanasekaran, G. Mahendran; Investigation of the severity level of diabetic retinopathy using supervised classifier algorithms; Computers and Electrical Engineering 45 (2015) 312–323.Google Scholar
  7. 7.
    Jose T. A-C., S. A. Rıos, M. Pola, R. Donoso; A Web-Based Platform for Automated Diabetic Retinopathy Screening; Procedia Computer Science 60 (2015) 557–563.CrossRefGoogle Scholar
  8. 8.
    H. Pratt, Frans C., D. M Broadbent, S. P Harding, Y. Zheng; Convolutional Neural Networks for Diabetic Retinopathy; Procedia Computer Science 90 (2016) 200–205.CrossRefGoogle Scholar
  9. 9.
    P. Prentasic, S. Loncaric; Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion; computer methods and programs in biomedicine 137 (2016) 281–292.Google Scholar
  10. 10.
  11. 11.
    Priyakshi B., Dr. S.R. Nirmala and Jyoti P. M.; Detection of Hemorrhages in Diabetic Retinopathy analysis using Color Fundus Images; 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS); 978-1-4799-8349-0/15/$31.00 ©2015 IEEE.Google Scholar
  12. 12.
    Saiprasad R., Arpit J., A. Mittal; Automated Feature Extraction for Early Detection of Diabetic Retinopathy in Fundus Images; 978-1-4244-3991-1/09/$25.00 ©2009 IEEE.Google Scholar
  13. 13.
    M.R.K. Mookiah, C. K.Chua, U. R. Acharya, R. J. Martis, A. Laude, C.M. Lim, E.Y.K. Ng; Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach; Knowledge-Based Systems 39 (2013) 9–22.CrossRefGoogle Scholar
  14. 14.
    M. Tavakoli, R. P. Shahri, H. Pourreza, Alireza M., Touka B., Mohammad H. B. T.; A complementary method for automated detection of microaneurysms in fluorescein angiography fundus images to assess diabetic retinopathy; Pattern Recognition 46(2013)2740–2753.CrossRefGoogle Scholar
  15. 15.
    P.V.Rao, Gayathri.R, Sunitha.R; A Novel Approach for Design and Analysis of Diabetic Retinopathy Glaucoma Detection using Cup to Disk Ration and ANN; Procedia Materials Science 10 (2015) 446–454.CrossRefGoogle Scholar
  16. 16.
    H.C.Vijayalakshmi and H. M. Saifuddin; PREDICTION OF DIABETIC RETINOPATHY USING MULTI LAYER PERCEPTRON; International Journal of Advanced Research (2016), Volume 4, Issue 6, 658–664.CrossRefGoogle Scholar
  17. 17.
    B. P. Gaikwad, S. N. Kayte, R R. Manza, S. B. Dabhade; Design and Development for Detection of Blood Vessels, Microneurysms and Exudates from the Retina; AEMDS - 2nd National Conference on Advancements in the Era of Multi-Disciplinary Systems 2013.Google Scholar
  18. 18.
    Manjiri B. Patwari, Ramesh R. Manza, Yogesh M. Rajput et al., “Classification and Calculation of Retinal Blood vessels Parameters”, IEEE’s International Conferences for Convergence of Technology 2016.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Tele-communicationDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of Instrumentation EngineeringGovernment College of EngineeringJalgaonIndia

Personalised recommendations