Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 275 Accesses

Abstract

The origin of magnetic fields with large coherent length, called cosmological magnetic fields, has been an open question, although many models are proposed. It has been believed that cosmological magnetic fields are the resultant of amplification by the dynamo mechanism. If we believe the dynamo mechanism, we need to set seed fields in the early universe, that is, before the cosmological recombination epoch. This is because the dynamo mechanism cannot create magnetic fields from the absence of seed fields. In this part, we apply the second-order vector mode in the cosmological perturbation theory to generate seed magnetic fields. The estimation of the second-order magnetic fields has not been accomplished because there is a discrepancy between previous results with the incomplete analysis. We reproduce the previous results by the original Boltzmann code and identify the cause of the discrepancy. Consequently, we provide the fully-considered results of second-order magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.M. Widrow, Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–823 (2002), arXiv:astro-ph/0207240

  2. M. Giovannini, The magnetized universe. Int. J. Mod. Phys. D 13, 391–502 (2004), arXiv:astro-ph/0312614

  3. K. Subramanian, Magnetizing the universe. PoS MRU, 071 (2007), arXiv:0802.2804

  4. D. Ryu, D.R. Schleicher, R.A. Treumann, C.G. Tsagas, L.M. Widrow, Magnetic fields in the large-scale structure of the universe. Space Sci. Rev. 166, 1–35 (2012), arXiv:1109.4055

  5. A. Kandus, K.E. Kunze, C.G. Tsagas, Primordial magnetogenesis. Phys. Rept. 505, 1–58 (2011), arXiv:1007.3891

  6. K. Subramanian, J.D. Barrow, Microwave background signals from tangled magnetic fields. Phys. Rev. Lett. 81, 3575–3578 (1998), arXiv:astro-ph/9803261

  7. L.M. Widrow, D. Ryu, D.R.G. Schleicher, K. Subramanian, C.G. Tsagas, R.A. Treumann, The first magnetic fields. Space Sci. Rev. 166, 37–70 (2012), arXiv:1109.4052

  8. R. Durrer, A. Neronov, Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013), arXiv:1303.7121

  9. A. Neronov, I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010), arXiv:1006.3504

  10. K. Takahashi, M. Mori, K. Ichiki, S. Inoue, Lower bounds on intergalactic magnetic fields from simultaneously observed GeV-TeV light curves of the blazar Mrk 501. Astrophys. J. 744, L7 (2012), arXiv:1103.3835

  11. K. Takahashi, M. Mori, K. Ichiki, S. Inoue, H. Takami, Lower bounds on magnetic fields in intergalactic voids from long-term GeV-TeV light curves of the blazar Mrk 421. Astrophys. J. 771, L42 (2013), arXiv:1303.3069

  12. W. Chen, J.H. Buckley, F. Ferrer, Search for GeV y-ray pair halos around low redshift blazars. Phys. Rev. Lett. 115, 211103 (2015), arXiv:1410.7717

  13. C.Caprini, S. Gabici, Gamma-ray observations of blazars and the intergalactic magnetic field spectrum, Phys. Rev. D 91(12), 123514 (2015), arXiv:1504.00383

  14. R.M. Kulsrud, S.W. Anderson, The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field. ApJ 396, 606–630 (1992)

    Article  ADS  Google Scholar 

  15. J.L. Han, R.N. Manchester, E.M. Berkhuijsen, R. Beck, Antisymmetric rotation measures in our Galaxy: evidence for an A0 dynamo. A & A 322, 98–102 (1997)

    ADS  Google Scholar 

  16. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rept. 417, 1–209 (2005), arXiv:astro-ph/0405052

  17. A.-C. Davis, M. Lilley, O. Tornkvist, Relaxing the bounds on primordial magnetic seed fields. Phys. Rev. D 60, 021301 (1999), arXiv:astro-ph/9904022

  18. B. Ratra, Cosmological ’seed’ magnetic field from inflation. ApJ 391, L1–L4 (1992)

    Article  ADS  Google Scholar 

  19. K. Bamba, J. Yokoyama, Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004), arXiv:astro-ph/0310824

  20. J. Martin, J. Yokoyama, Generation of large-scale magnetic fields in single-field inflation. JCAP 0801, 025 (2008), arXiv:0711.4307

  21. V. Demozzi, V. Mukhanov, H. Rubinstein, Magnetic fields from inflation? JCAP 0908, 025 (2009), arXiv:0907.1030

  22. S. Kanno, J. Soda, M.-A. Watanabe, Cosmological magnetic fields from inflation and backreaction. JCAP 0912, 009 (2009), arXiv:0908.3509

  23. T. Fujita, S. Mukohyama, Universal upper limit on inflation energy scale from cosmic magnetic field. JCAP 1210, 034 (2012), arXiv:1205.5031

  24. T. Fujita, S. Yokoyama, Critical constraint on inflationary magnetogenesis. JCAP 1403, 013 (2014), arXiv:1402.0596

  25. C. Caprini, L. Sorbo, Adding helicity to inflationary magnetogenesis, JCAP 1410(10), 056 (2014), arXiv:1407.2809

  26. K.-W. Ng, S.-L. Cheng, W. Lee, Inflationary dilaton-axion magnetogenesis. Chin. J. Phys. 53, 110105 (2015), arXiv:1409.2656

  27. T. Fujita, R. Namba, Y. Tada, N. Takeda, H. Tashiro, Consistent generation of magnetic fields in axion inflation models. JCAP 1505(05) 054 (2015), arXiv:1503.05802

  28. M. Christensson, M. Hindmarsh, A. Brandenburg, Inverse cascade in decaying 3-D magnetohydrodynamic turbulence. Phys. Rev. E 64, 056405 (2001), arXiv:astro-ph/0011321

  29. R. Banerjee, K. Jedamzik, The evolution of cosmic magnetic fields: from the very early universe, to recombination, to the present. Phys. Rev. D 70, 123003 (2004), arXiv:astro-ph/0410032

  30. M. Joyce, M.E. Shaposhnikov, Primordial magnetic fields, right-handed electrons, and the Abelian anomaly. Phys. Rev. Lett. 79, 1193–1196 (1997), arXiv:astro-ph/9703005

  31. G. Davies, L.M. Widrow, A possible mechanism for generating galactic magnetic fields. ApJ 540, 755–764 (2000)

    Article  ADS  Google Scholar 

  32. H. Hanayama, K. Takahashi, K. Kotake, M. Oguri, K. Ichiki et al., Biermann mechanism in primordial supernova remnant and seed magnetic fields. Astrophys. J. 633, 941 (2005), arXiv:astro-ph/0501538

  33. R.M. Kulsrud, R. Cen, J.P. Ostriker, D. Ryu, The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481 (1997), arXiv:astro-ph/9607141

  34. Y. Fujita, T.N. Kato, A possible origin of magnetic fields in galaxies and clusters: strong magnetic fields at z 10? Mon. Not. Roy. Astron. Soc. 364, 247–252 (2005), arXiv:astro-ph/0508589

  35. M.V. Medvedev, L.O. Silva, M. Kamionkowski, Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks. Astrophys. J. 642, L1–L4 (2006), arXiv:astro-ph/0512079

  36. E.R. Harrison, Generation of magnetic fields in the radiation ERA. MNRAS 147, 279 (1970)

    Article  ADS  Google Scholar 

  37. K. Takahashi, K. Ichiki, H. Ohno, H. Hanayama, Magnetic field generation from cosmological perturbations. Phys. Rev. Lett. 95, 121301 (2005), arXiv:astro-ph/0502283

  38. A. Lewis, Observable primordial vector modes. Phys. Rev. D 70, 043518 (2004), arXiv:astro-ph/0403583

  39. K. Ichiki, K. Takahashi, N. Sugiyama, Constraint on the primordial vector mode and its magnetic field generation from seven-year Wilkinson Microwave Anisotropy Probe Observations. Phys. Rev. D 85, 043009 (2012), arXiv:1112.4705

  40. S. Saga, M. Shiraishi, K. Ichiki, Constraining primordial vector mode from B-mode polarization. JCAP 1410, 004 (2014), arXiv:1405.4810

  41. L. Hollenstein, C. Caprini, R. Crittenden, R. Maartens, Challenges for creating magnetic fields by cosmic defects. Phys. Rev. D 77, 063517 (2008), arXiv:0712.1667

  42. K. Horiguchi, K. Ichiki, T. Sekiguchi, N. Sugiyama, Primordial magnetic fields from self-ordering scalar fields. JCAP 1504(04), 007 (2015), arXiv:1501.06304

  43. S. Saga, M. Shiraishi, K. Ichiki, N. Sugiyama, Generation of magnetic fields in Einstein-Aether gravity. Phys. Rev. D 87(10), 104025 (2013), arXiv:1302.4189

  44. W. Hu, D. Scott, J. Silk, Reionization and cosmic microwave background distortions: a complete treatment of second order Compton scattering. Phys. Rev. D 49, 648–670 (1994), arXiv:astro-ph/9305038

  45. L. Senatore, S. Tassev, M. Zaldarriaga, Cosmological perturbations at second order and recombination perturbed. JCAP 0908, 031 (2009), arXiv:0812.3652

  46. N. Bartolo, S. Matarrese, A. Riotto, The full second-order radiation transfer function for large-scale cmb anisotropies. JCAP 0605, 010 (2006), arXiv:astro-ph/0512481

  47. N. Bartolo, S. Matarrese, A. Riotto, CMB anisotropies at second order I. JCAP 0606, 024 (2006), arXiv:astro-ph/0604416

  48. N. Bartolo, S. Matarrese, A. Riotto, CMB anisotropies at second-order. 2. analytical approach. JCAP 0701, 019 (2007), arXiv:astro-ph/0610110

  49. C. Pitrou, J.-P. Uzan, F. Bernardeau, The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations. JCAP 1007, 003 (2010), arXiv:1003.0481

  50. C. Pitrou, The radiative transfer at second order: a full treatment of the boltzmann equation with polarization. Class. Quant. Grav. 26, 065006 (2009), arXiv:0809.3036

  51. M. Beneke, C. Fidler, K. Klingmuller, B polarization of cosmic background radiation from second-order scattering sources. JCAP 1104, 008 (2011), arXiv:1102.1524

  52. M. Beneke, C. Fidler, Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization. Phys. Rev. D 82, 063509 (2010), arXiv:1003.1834

  53. A. Naruko, C. Pitrou, K. Koyama, M. Sasaki, Second-order Boltzmann equation: gauge dependence and gauge invariance. Class. Quant. Grav. 30, 165008 (2013), arXiv:1304.6929

  54. R. Saito, A. Naruko, T. Hiramatsu, M. Sasaki, Geodesic curve-of-sight formulae for the cosmic microwave background: a unified treatment of redshift, time delay, and lensing. JCAP 1410(10), 051 (2014), arXiv:1409.2464

  55. C. Fidler, K. Koyama, G.W. Pettinari, A new line-of-sight approach to the non-linear Cosmic Microwave Background. JCAP 1504(04), 037 (2015), arXiv:1409.2461

  56. T. Kobayashi, R. Maartens, T. Shiromizu, K. Takahashi, Cosmological magnetic fields from nonlinear effects. Phys. Rev. D 75, 103501 (2007), arXiv:astro-ph/0701596

  57. K. Takahashi, K. Ichiki, N. Sugiyama, Electromagnetic properties of the early universe. Phys. Rev. D 77, 124028 (2008), arXiv:0710.4620

  58. S. Maeda, S. Kitagawa, T. Kobayashi, T. Shiromizu, Primordial magnetic fields from second-order cosmological perturbations: tight coupling approximation. Class. Quant. Grav. 26, 135014 (2009), arXiv:0805.0169

  59. R. Gopal, S. Sethi, Generation of magnetic field in the pre-recombination era. Mon. Not. Roy. Astron. Soc. 363, 521–528 (2005), arXiv:astro-ph/0411170

  60. E. Nalson, A.J. Christopherson, K.A. Malik, Effects of non-linearities on magnetic field generation. JCAP 1409, 023 (2014), arXiv:1312.6504

  61. S. Matarrese, S. Mollerach, A. Notari, A. Riotto, Large-scale magnetic fields from density perturbations. Phys. Rev. D 71, 043502 (2005), arXiv:astro-ph/0410687

  62. K. Ichiki, K. Takahashi, H. Ohno, H. Hanayama, N. Sugiyama, Cosmological Magnetic Field: a fossil of density perturbations in the early universe. Science 311, 827–829 (2006), arXiv:astro-ph/0603631

  63. K. Ichiki, K. Takahashi, N. Sugiyama, H. Hanayama, H. Ohno, Magnetic field spectrum at cosmological recombination, arXiv:astro-ph/0701329

  64. E. Fenu, C. Pitrou, R. Maartens, The seed magnetic field generated during recombination. Mon. Not. Roy. Astron. Soc. 414, 2354–2366 (2011), arXiv:1012.2958

  65. K. Subramanian, D. Narasimha, S.M. Chitre, Thermal generation of cosmological seed magnetic fields in ionization fronts. MNRAS 271, L15 (1994)

    Article  ADS  Google Scholar 

  66. K. Jedamzik, V. Katalinic, A.V. Olinto, Damping of cosmic magnetic fields. Phys. Rev. D 57, 3264–3284 (1998), arXiv:astro-ph/9606080

  67. P.A.R. Planck, Collaboration, Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014), arXiv:1303.5076

  68. BICEP2 Collaboration Collaboration, P. Ade et al., Detection of B-Mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112, 241101 (2014), arXiv:1403.3985

  69. W.M.A.P. Collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226

  70. E.R. Siegel, J.N. Fry, Cosmological structure formation creates large-scale magnetic fields. Astrophys. J. 651, 627–635 (2006), arXiv:astro-ph/0604526

  71. R. Durrer, C. Caprini, Primordial magnetic fields and causality. JCAP 0311, 010 (2003), arXiv:astro-ph/0305059

  72. L. Pogosian, T. Vachaspati, S. Winitzki, Signatures of kinetic and magnetic helicity in the CMBR. Phys. Rev. D 65, 083502 (2002), arXiv:astro-ph/0112536

  73. C. Caprini, R. Durrer, T. Kahniashvili, The Cosmic microwave background and helical magnetic fields: The Tensor mode. Phys. Rev. D 69, 063006 (2004), arXiv:astro-ph/0304556

  74. T. Kahniashvili, B. Ratra, Effects of cosmological magnetic helicity on the cosmic microwave background. Phys. Rev. D 71, 103006 (2005), arXiv:astro-ph/0503709

  75. M. Shiraishi, A. Ricciardone, S. Saga, Parity violation in the CMB bispectrum by a rolling pseudoscalar. JCAP 1311, 051 (2013), arXiv:1308.6769

  76. M. Shiraishi, Parity violation of primordial magnetic fields in the CMB bispectrum. JCAP 1206, 015 (2012), arXiv:1202.2847

  77. H. Tashiro, W. Chen, F. Ferrer, T. Vachaspati, Search for CP violating signature of intergalactic magnetic helicity in the gamma ray sky, arXiv:1310.4826

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Saga .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saga, S. (2018). Generation of Magnetic Fields. In: The Vector Mode in the Second-order Cosmological Perturbation Theory. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8007-4_3

Download citation

Publish with us

Policies and ethics