Application of Thidiazuron in the Micropropagation of Fagaceae

  • Ma del Carmen San José
  • Ma Teresa Martínez
  • Ma José Cernadas
  • Raquel Montenegro
  • Elena Corredoira


The Fagaceae family consists of 7 genera and around 1000 species of trees and bushes that are mainly distributed in temperate and warm areas of the northern hemisphere, although few cross the equator in Southeast Asia. In terms of forestry, members of the Fagaceae are of most importance in forests in the temperate regions of the northern hemisphere, a dominance shared with the conifers that replace this family in cold areas and mountain tops. The genera Quercus (oaks and holm oaks), Fagus (beeches), and Castanea (chestnut) are commercially important sources of timber; Castanea and Quercus (holm oaks) also provide fruits that are used as human food and as animal feed. Many of these trees are also of ornamental value, mainly due to their attractive color of their leaves in autumn.

The majority of these species are difficult to propagate, particularly when the trees reach their adult stage. Biotechnology techniques, such as in vitro tissue culture, would therefore be of great use for their propagation and conservation. These techniques involve the use of growth regulators, especially cytokinins, among which is included thidiazuron (TDZ). This cytokinin has been used to stimulate the development of axillary buds and, mainly, for the induction of adventitious buds and in very few cases in somatic embryogenesis processes. This review presents a summary of the various studies in which TDZ has been used in the micropropagation of diverse species of the family Fagaceae.


Castanea Fagaceae Fagus Micropropagation Quercus Thidiazuron 



To all the members who, during all these years, have been part of the Biotechnology and Forest Improvement Group, having contributed in one way or another to the success of the micropropagation of these species. These works have been partially funded with different projects from CICYT, MINECO, and Xunta de Galicia (Spain).


  1. Ahmad N, Anis M (2007) Rapid clonal multiplication of a woody tree, Vitex negundo L., through axillary shoot proliferation. Agrofor Syst 71:195–200CrossRefGoogle Scholar
  2. Ahuja MR (1984) In vitro induction of organogenesis in juvenile and mature beech. Silv Genet 33:241–242Google Scholar
  3. Arndt FR, Rusch R, Stillfried HV, Hanisch B, Martin WC (1976) SN 49537. A new defoliant. Plant Physiol 57:s-99. (abstr)Google Scholar
  4. Baker BS, Bhatia SK (1993) Factors affecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Organ Cult 35:273–277CrossRefGoogle Scholar
  5. Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwoods trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of Forest trees. NIFoS, Seoul, pp 56–74Google Scholar
  6. Bonga JM (2016) Can explant choice help to resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees.
  7. Bonga JM, von Aderkas P (1992) In vitro culture of trees. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  8. Bowen-O’Connor CA, Hubstenberger J, Killough C, Van Leeuwen DM, St. Hilaire R (2007) In vitro propagation of Acer grandidentatum Nutt. In Vitro Cell Dev Biol Plant 43:40–50CrossRefGoogle Scholar
  9. Camus A (1929) Les chataigniers. Monographie des genres Castanea et Castanopsis. In: Le Chevalier P (ed) Encyclopédie Economique de Sylviculture. Paul Lechevalier, ParisGoogle Scholar
  10. Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L (2007) An approach to acorn production in Iberian dehesas. Agrofor Syst 70:3–9CrossRefGoogle Scholar
  11. Carraway DT, Merkle SA (1997) Plantlet regeneration from somatic embryos of American chestnut. Can J For Res 27:1805–1812CrossRefGoogle Scholar
  12. Castillo A, Cabrera D, Rodríguez P, Zoppolo R, Robinson T (2015) In vitro micropropagation of CG41 apple rootstock. Acta Hortic 1083:569–576CrossRefGoogle Scholar
  13. Chalupa V (1979) In vitro propagation of some broad-leaved forest trees. Commun Inst For Czech 11:150–170Google Scholar
  14. Chalupa V (1981) Clonal propagation of broad-leaved forest trees in vitro. Commun Inst For Czech 12:255–271Google Scholar
  15. Chalupa V (1985) In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine-type cytokinins and thidiazuron. Commun Inst For Czech 14:65–90Google Scholar
  16. Chalupa V (1988) Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol Plant 30:414–421CrossRefGoogle Scholar
  17. Chalupa V (1996) Fagus sylvatica L. (European beech). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Trees IV, vol 35. Springer, Berlin/Heidelberg, pp 138–154Google Scholar
  18. Corredoira E, San José MC, Ballester A, Vieitez AM (2005) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hortic 693:387–393CrossRefGoogle Scholar
  19. Corredoira E, Ballester A, Vieitez FJ, Vieitez AM (2006) Somatic embryogenesis in chestnut. In: Mujib A, Samaj J (eds) Plant cell monographs, Somatic Embryogenesis, vol 2. Springer, Berlin/Heidelberg, pp 177–199Google Scholar
  20. Corredoira E, Vieitez AM, San José MC, Vieitez FJ, Ballester A (2016) Advances in somatic embryogenesis and genetic transformation of European chestnut: development of transgenic resistance to ink and blight disease. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. NIFoS, Seoul, pp 279–301Google Scholar
  21. Cuenca B, Vieitez AM (1999) Histological study of in vitro development of adventitious buds on leaf explant of Oriental beech (Fagus orientalis Lipski). In Vitro Cell Dev Biol Plant 35:326–332CrossRefGoogle Scholar
  22. Cuenca B, Vieitez AM (2000) Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regul 32:1–12CrossRefGoogle Scholar
  23. Cuenca B, Ballester A, Vieitez AM (2000) In vitro adventitious bud regeneration from internode segments of beech. Plant Cell Tissue Organ Cult 60:213–220CrossRefGoogle Scholar
  24. Driver JA, Kuniyuki AH (1972) In vitro propagation of Paradox walnut rootstock. Hortscience 19:507–509Google Scholar
  25. Fellman CD, Read PE, Hosier MA (1987) Effects of TDZ and CPPU on meristem formation and shoot proliferation. Hortscience 22:1197–1200Google Scholar
  26. Fernández-Lorenzo JL, Rodríguez S, Viega M (2001) Micropropagación de dos cultivares de fruto de Castanea sativa Mill. In: Proc III Congreso Forestal Español. Vol II. Mejora Genética, Viveros y Repoblación Forestal, Granada (Spain), pp 742–749Google Scholar
  27. Fey BS, Endress PK (1983) Development and morphological interpretation of the cupule in Fagaceae. Flora 173:451–468CrossRefGoogle Scholar
  28. Gomes F, Canhoto JM (2009) Micropropagation of strawberry tree (Arbutus unedo L.) from adult plants. In Vitro Cell Dev Biol Plant 45:72–82CrossRefGoogle Scholar
  29. González-Benito ME, Martín C (2011) In vitro preservation of Spanish biodiversity. In Vitro Cell Dev Biol Plant 47:46–54CrossRefGoogle Scholar
  30. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170CrossRefPubMedGoogle Scholar
  31. Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:1–12Google Scholar
  32. Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000CrossRefGoogle Scholar
  33. Hare PD, Staden J, van Staden J (1994) Inhibitory effect of TDZ on the activity of cyotkinin oxidase isolated from soybean callus. Plant Cell Physiol 35:1121–1125CrossRefGoogle Scholar
  34. Herman EB (1995) Recent advances in plant tissue culture III. Agritech Consultants, Shrub OakGoogle Scholar
  35. Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. Royal Botanic Gardens, KewGoogle Scholar
  36. Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119CrossRefGoogle Scholar
  37. Hutchinson MJ, Saxena PK (1996) Role of purine metabolism in TDZ-induced somatic embryogenesis of geranium (Pelargonium x hortorum) hypocotyls cultures. Physiol Plant 98:517–522CrossRefGoogle Scholar
  38. Johnson PS, Shifley SR, Rogers R (2002) The ecology and silviculture of oaks. CABI, New YorkCrossRefGoogle Scholar
  39. Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490CrossRefPubMedGoogle Scholar
  40. Kahia J, Kirika M, Lubabali H, Mantel S (2016) High-frequency direct somatic embryogenesis and plantlet regeneration from leaves derived from in vitro-germinated seedlings of a Coffea arabica hybrid cultivar. Hortscience 51:1148–1152CrossRefGoogle Scholar
  41. Kartsonas E, Papafotiou M (2007) Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tissue Organ Cult 90:111–116CrossRefGoogle Scholar
  42. Kartsonas E, Papafotiou M (2009) Micropropagation of Quercus euboica Pap., a rare endemic oak species in Greece. Acta Hortic 813:485–490CrossRefGoogle Scholar
  43. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genome 8:583–610CrossRefGoogle Scholar
  44. Lelu-Walter MA, Thompson D, Harvengt L, Sánchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the art, benefits, challenges and future direction. Trees Genet Genomes 9:883–899CrossRefGoogle Scholar
  45. Lenz RR, Magnusson VA, Dai W (2016) Plant regeneration of ‘Amethyst’ purple raspberry (Rubus occidentalis x R. idaeus ‘Amethyst’) from in vitro leaf tissues. Acta Hortic 1133:491–496CrossRefGoogle Scholar
  46. Li H, Murch SJ, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell Tissue Organ Cult 62:169–173CrossRefGoogle Scholar
  47. Liu Y, Lu J, Zhu H, Li L, Shi Y, Yin X (2016) Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L. Biotechnol Biotechnol Equip 30:907–914CrossRefGoogle Scholar
  48. Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb Proc Int Plant Propagators’ Soc 30:421–427Google Scholar
  49. Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29P:92–96CrossRefGoogle Scholar
  50. Martínez MT, Corredoira E, Valladares S, Jorquera L, Vieitez AM (2008) Germination and conversion of somatic embryos derived from mature Quercus robur trees: the effects of cold storage and thidiazuron. Plant Cell Tissue Organ Cult 95:341–351CrossRefGoogle Scholar
  51. Martínez MT, San José MC, Vieitez AM, Cernadas MJ, Ballester A, Corredoira E (2017) Propagation of mature Quercus ilex L. (holm oak) trees by somatic embyogenesis. Plant Cell Tissue Organ Cult 131:321–333Google Scholar
  52. Matand K, Prakash CC (2007) Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. J Biotechnol 130:202–207CrossRefPubMedGoogle Scholar
  53. Meier K, Reuther G (1994) Factors controlling micropropagation of mature Fagus sylvatica. Plant Cell Tissue Organ Cult 39:231–238CrossRefGoogle Scholar
  54. Mok MC, Mok DWS (1985) The metabolism of [14C]-TDZ in callus cultures of Phaseolus lunatus. Physiol Plant 65:427–432CrossRefGoogle Scholar
  55. Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N′-1,2,3-thidiazol-5-ylurea (TDZ). Phytochemistry 21:1509–1511CrossRefGoogle Scholar
  56. Monteuuis O (2016) Micropropagation and production of forest trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of Forest trees. NIFoS, Seoul, pp 32–55Google Scholar
  57. Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different original clonal offspring from mature Sequoiadendron giganteum genotype. Trees 22:779–784CrossRefGoogle Scholar
  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  59. Murch SJ, Krishnaraj S, Saxena PK (1997) TDZ-induce morphogenesis of Regal Geranium (Pelargonium domesticum): a potential stress response. Physiol Plant 101:183–191CrossRefGoogle Scholar
  60. Murthy BNS, Saxena PK (1998) Somatic embryogenesis and plant regeneration of Neem (Azadirachta indica A. Juss). Plant Cell Rep 17:469–475CrossRefGoogle Scholar
  61. Murthy BNS, Murch SJ, Saxena PK (1995) TDZ-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276CrossRefGoogle Scholar
  62. Murthy BNS, Singh RP, Saxena PK (1996) Induction of high frequency somatic embryogenesis in geranium (Pelargonium x hortorum Bailey cv. Ringo Rose) cotyledonary cultures. Plant Cell Rep 15:423–426CrossRefPubMedGoogle Scholar
  63. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275CrossRefGoogle Scholar
  64. Nagata R, Kawachi E, Hashimoto Y, Shudo K (1993) Cytokinins-specific binding protein in etiolated mung bean seedlings. Biochem Biophys Res Commun 191:543–549CrossRefPubMedGoogle Scholar
  65. Nelson CD, Powell WA, Merkle SA, Carlson JE, Hebard FV, Islam-Faridi N, Staton ME, Georgi L (2014) Biotechnology of trees: chestnut. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 3–34Google Scholar
  66. Nhut DT, Hahn NTM, Tuan PQ, Nguyet TM, Tram NTH, Chinh NC, Nguyen NH, Vinh DN (2006) Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum. Sci Hortic 110:93–97CrossRefGoogle Scholar
  67. Nixon KC, Crepet WL (1989) Triganobalanus (Fagaceae): taxonomy status and phylogenetic relationships. Am J Bot 76:828–841CrossRefGoogle Scholar
  68. Panda BM, Mehta UJ, Hazra S (2016) Micropropagation of Semecarpus anacardium L. from mature tree-derived nodal explants. Plant Biosyst 150:942–952CrossRefGoogle Scholar
  69. Pandey A, Tamta S (2014) In vitro propagation of the important tasar oak (Quercus serrata Thunb.) by casein hydrolysate promoted high frequency shoot proliferation. J Sustain Forest 33:590–603CrossRefGoogle Scholar
  70. Park YS, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute for Forest Science (NIfoS), Seoul, pp 302–322Google Scholar
  71. Pavingerova D (2009) The influence of thidiazuron on shoot regeneration from leaf explants of fifteen cultivars of Rhododendron. Biol Plant 54:797–799CrossRefGoogle Scholar
  72. Preece JE, Huetteman CA, Ashby WC, Roth PL (1991) Micro- and cutting preparation of silver maple I. Results with adult and juvenile propagules. J Am Soc Hortic Sci 116:142–148Google Scholar
  73. Ramírez M, Krasowski MJ, Loo JA (2007) Vegetative propagation of American beech resistant to beech bark disease. Hort Sci 40:320–324Google Scholar
  74. Roussos PA, Archimandriti A, Beldekou I (2016) Improving in vitro multiplication of juvenile European chestnut (Castanea sativa Mill.) explants by the use of growth retardants. Sci Hortic 198:254–256CrossRefGoogle Scholar
  75. Rugini E, Silvestri C (2016) Somatic embryogenesis in olive (Olea europaea L. subsp europaea var. sativa and var. sylvestris). Methods Mol Biol 1359:341–349CrossRefPubMedGoogle Scholar
  76. San José MC, Ballester A, Vieitez AM (2001) Effect of thidiazuron on multiple shoot induction and plant regeneration from cotyledonary nodes of chestnut. J Hortic Sci Biotechnol 76:588–595Google Scholar
  77. San José MC, Cernadas MJ, Corredoira E (2014) Histology of the regeneration of Paulownia tomentosa (Paulowniaceae) by organogenesis. Rev Biol Trop 62:809–818CrossRefGoogle Scholar
  78. Sato T (1991) Basic studies of organ and callus culture in woody plants. Bull For Prod Res Inst 360:35–119Google Scholar
  79. Saxena PK, Malik KA, Gill R (1992) Induction by TDZ of somatic embryogenesis in intact seedlings of peanut. Planta 187:421–424CrossRefPubMedGoogle Scholar
  80. Sedlák J, Paprštein F (2015) In vitro multiplication of old pear cultivars. Acta Hortic 1094:163–167CrossRefGoogle Scholar
  81. Sezgin M, Dumanoglu H (2014) Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill). In Vitro Cell Dev Biol Plant 50:58–68CrossRefGoogle Scholar
  82. Singh A, Agarwal PK (2016) Enhanced micropropagation protocol of ex vitro rooting of a commercially important crop plant Simmondsia chinensis (Link) Schneider. J For Sci 62:107–115CrossRefGoogle Scholar
  83. Singh G, Rai ID, Rawat GS (2011) The year 2010 was ‘mast sed year’ for the Kharsu oak (Quercus semecarpifolia Sm.) in the western Himalaya. Curr Sci 100:1275Google Scholar
  84. Soylu A, Ertük Ü (1999) Researches on micropropagation of chestnut. Acta Hortic 494:247–253CrossRefGoogle Scholar
  85. Tafazoli M, Nasr SMH, Jalilvand H, Bayat D (2013) Plant regeneration through organogenesis of chestnut (Castanea sativa Mill.) Afr J Biotechnol 12:7063–7069Google Scholar
  86. Tetsumura T, Yamashita K (2004) Micropropagation of Japanese chestnut (Castanea crenata Sieb. et Zucc.) seedlings. Hort Sci 39:1684–1687Google Scholar
  87. Traore A, Maximova SN, Guiltinan MJ (2003) Micropropagation of Theobroma cacao L. using embryo-derived plants. In Vitro Cell Dev Biol Plant 39:332–337CrossRefGoogle Scholar
  88. Vengadesan G, Pijut PM (2009) In vitro propagation of northern red oak (Quercus rubra L.) In Vitro Cell Dev Biol Plant 45:474–482CrossRefGoogle Scholar
  89. Vieitez FJ, Merkle SZ (2005) Castanea spp. chestnut. In: Litz (ed) Biotechnology of fruit and nut crops. CAB International, Wallingford, pp 265–296CrossRefGoogle Scholar
  90. Vieitez AM, San José MC (1996) Adventitious shoot regeneration from Fagus sylvatica leaf explants in vitro. In Vitro Cell Dev Biol Plant 32:140–147CrossRefGoogle Scholar
  91. Vieitez AM, Ferro E, Ballester A (1993) Micropropagation of Fagus sylvatica L. In Vitro Cell Dev Biol Plant 29P:183–188CrossRefGoogle Scholar
  92. Vieitez AM, San José MC, Sánchez MC, Ballester A (2003) Micropropagation of Fagus spp. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, pp 181–215CrossRefGoogle Scholar
  93. Vieitez AM, Corredoira E, Martínez MT, San José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2012) Application of biotechnological tools to Quercus improvement. Eur J For Res 131:519–539CrossRefGoogle Scholar
  94. Visser C, Qureshi JA, Gill T, Saxena PK (1992) Morphoregulatory role of TDZ. Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99:1704–1707CrossRefPubMedPubMedCentralGoogle Scholar
  95. Waidinger E, Rodkachane P (1993) Investigations on micropropagation of adult chestnut. Proc Int Cong on Chestnut. Spoleto, Italy, pp 205–210Google Scholar
  96. Wang SY, Jiao HJ, Faust M (1991) Changes in metabolic enzyme activities during TDZ-induced lateral bud break of apple. Hort Sci 26:171–173Google Scholar
  97. Wheeler N, Sedroff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187CrossRefGoogle Scholar
  98. Wilhem E, Rodkachane P (1992) Micropropagation of juvenile and adult Castanea sativa by using thidiazuron. Proc Int Chestnut Conference, Morgantown, West Virginia, pp 129Google Scholar
  99. Wojtania A, Gabryszewska E, Podwyszynska M (2011) The effect of growth regulators and sucrose concentration on in vitro propagation of Camellia japonica L. Propag Ornam Plants 11:177–183Google Scholar
  100. Yang G, Zhongge L, Asante TM (2009) In vitro responses of American chestnut to plant growth regulators in culture medium. Acta Hortic 844:229–234CrossRefGoogle Scholar
  101. Yip WK, Yang SF (1986) Effect of TDZ, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80:515–519CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zaytseva Y, Poluboyarova TV, Novikova TI (2016) Effects of thidiazuron on in vitro morphogenic response of Rhododendron sichotense Pojark. and Rhododendron catawbiense cv. Grandiflorum leaf explants. In Vitro Cell Dev Biol Plant 52:56–63CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ma del Carmen San José
    • 1
  • Ma Teresa Martínez
    • 1
  • Ma José Cernadas
    • 1
  • Raquel Montenegro
    • 1
  • Elena Corredoira
    • 1
  1. 1.Instituto de Investigaciones Agrobiológicas de Galicia, CSICSantiago de CompostelaSpain

Personalised recommendations