Skip to main content

Thidiazuron in Micropropagation of Small Fruits

  • Chapter
  • First Online:
Thidiazuron: From Urea Derivative to Plant Growth Regulator

Abstract

Strawberry, raspberry, grape, blueberry, and cranberry are major small fruit crops cultivated widely across the world. They are highly appreciated and have long been enjoyed enormous popularity among consumers. Their superior nutritive components play a significant dietary role in maintaining human health that has led to a dramatic increase of their global production. There has been an immense progress in small fruit micropropagation using semisolid gelled and liquid media containing different plant growth regulators (PGRs). Thidiazuron [1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (TDZ)] is a PGR and with its cytokinin- and auxin-like effects, has significant role in in vitro propagation of small fruit crops. Bioreactor micropropagation containing liquid media with TDZ has resulted in significant progresses not only in reducing micropropagation cost but also in speeding up the process significantly for these crop species. However, the optimal plant production depends upon a number of factors including genotype, media types, types and concentration of PGR, and culture environment. The chapter deals with the progress in-depth of various aspects of small fruit micropropagation in semisolid and liquid media containing TDZ and use of TDZ in a bioreactor micropropagation for commercial production. Somaclonal variation can be a major concern in small fruit micropropagation using TDZ. Although strategies have been developed to reduce these variations, DNA-based molecular markers are promising tools to monitor clonal fidelity of TDZ-induced micropropagated small fruit plants. The chapter also describes the use of molecular markers for the assessment of genetic fidelity, stability, and true-to-typeness in small fruit tissue culture plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames BN, Shigena MK, Hegen TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Nat Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MJ, Hollaender A (eds) Tissue culture in forestry and agriculture. Plenum Press, New York, pp 9–29

    Chapter  Google Scholar 

  • Anderson WC (1975) Propagation of rhododendrons by tissue culture. Part I: development of a culture medium for multiplication of shoots. Comb Proc Int Plant Prop Soc 25:129–135

    Google Scholar 

  • Arndt FR, Rusch R, Stillfried HV, Hanisch B, Martin WC (1976) SN 49537, a new defoliant. Plant Physiol 57:s-99. Abstr

    Google Scholar 

  • Biswas MK, Islam R, Hossain M (2007) Somatic embryogenesis in strawberry (Fragaria sp.) through callus culture. Plant Cell Tissue Organ Cult 90:49–54

    Article  CAS  Google Scholar 

  • Bollmark M, Kubat B, Eliasson L (1988) Variation in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol 132:262–265

    Article  CAS  Google Scholar 

  • Bouamama B, Ben Salem-Fnayou A, Ben Jouira H, Ghorbel A, Mliki A (2007) Influence of the flower stage and culture medium on the induction of somatic embryogenesis from anther culture in Tunisian grapevine cultivars. J Int Sci Vigne Vin 41(4):185–192

    CAS  Google Scholar 

  • Boxus P (1974) The production of strawberry plants by in vitro micropropagation. J Hort Sci 49:209–210

    CAS  Google Scholar 

  • Cao X, Hammerschlag FA (2000) Improved shoot organogenesis from leaf explants of highbush blueberry. Hortscience 35:945–947

    CAS  Google Scholar 

  • Childers NF (1980) Foreward. In: Childers NF (ed) The strawberry: cultivars to marketing. Hort Publ, Gainesville, p ix

    Google Scholar 

  • Cordenunsi BR, do Nascimento JRO, Genovese MI, Lajolo FM (2002) Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. J Agr Food Chem 50:2581–2586

    Article  CAS  Google Scholar 

  • Dale A, Hughes BR, Donnelly D (2008) The role of micropropagation in producing specific pathogen-tested plants. Hortscience 43:74–77

    Google Scholar 

  • Dalman P, Malata V (1997) The effect of cultivation practices on the overwintering and yield of strawberry. Acta Hort 439:881–886

    Article  Google Scholar 

  • Daubeny HA (1996) Brambles. In: Janick J, Moore JN (eds) Fruit breeding, Vine and small fruit crops, vol Vol II. Wiley, New York, pp 109–190

    Google Scholar 

  • Debnath SC (2003a) Micropropagation of small fruits. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, pp 465–506

    Chapter  Google Scholar 

  • Debnath SC (2003b) Improved shoot organogenesis from hypocotyl segments of lingonberry (Vaccinium vitis-idaea L.) In Vitro Cell Dev Biol – Plant 39:490–495

    Article  Google Scholar 

  • Debnath SC (2005a) Micropropagation of lingonberry: influence of genotype, explant orientation, and overcoming TDZ-induced inhibition of shoot elongation using zeatin. Hortscience 40:185–188

    CAS  Google Scholar 

  • Debnath SC (2005b) Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell Dev Biol Plant 41:671–676

    Article  Google Scholar 

  • Debnath SC (2005c) A two-step procedure for adventitious shoot regeneration from in vitro-derived lingonberry leaves: shoot induction with TDZ and shoot elongation using zeatin. Hortscience 40:189–192

    CAS  Google Scholar 

  • Debnath SC (2005d) Morphological development of lingonberry as affected by in vitro and ex vitro propagation methods and source propagule. Hortscience 40:760–763

    Google Scholar 

  • Debnath SC (2006a) Propagation of Vaccinium in vitro: a review. Int J Fruit Sci 6:47–71

    Article  Google Scholar 

  • Debnath SC (2006b) Zeatin overcomes thidiazuron-induced inhibition of shoot elongation and promotes rooting in strawberry culture in vitro. J Hort Sci Biotechnol 81:349–354

    Article  Google Scholar 

  • Debnath SC (2006c) Influence of propagation method and indole-3-butyric acid on growth and development of in vitro- and ex vitro-derived lingonberry plants. Can J Plant Sci 86:235–243

    Article  CAS  Google Scholar 

  • Debnath SC (2007a) Strategies to propagate Vaccinium fruit nuclear stocks for Canadian industry. Can J Plant Sci 87:911–922

    Article  CAS  Google Scholar 

  • Debnath SC (2007b) A two-step procedure for in vitro multiplication of cloudberry (Rubus chamaemorus L.) shoots using bioreactor. Plant Cell Tissue Organ Cult 88:185–191

    Article  CAS  Google Scholar 

  • Debnath SC (2007c) Influence of indole-3-butyric acid and propagation method on growth and development of in vitro- and ex vitro-derived lowbush blueberry plants. Plant Growth Regul 51:245–253

    Article  CAS  Google Scholar 

  • Debnath SC (2008a) Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can J Plant Sci 88:737–746

    Article  CAS  Google Scholar 

  • Debnath SC (2008b) Zeatin-induced one-step in vitro cloning affects the vegetative growth of cranberry (Vaccinium macrocarpon Ait.) micropropagules over stem cuttings. Plant Cell Tissue Organ Cult 93:231–240

    Google Scholar 

  • Debnath SC (2009a) A two-step procedure for adventitious shoot regeneration on excised leaves of lowbush blueberry. In Vitro Cell Develop Biol – Plant 45:122–128

    Article  Google Scholar 

  • Debnath SC (2009b) Characteristics of strawberry plants propagated by in vitro bioreactor culture and ex vitro propagation method. Eng Life Sci 9:239–246

    Article  CAS  Google Scholar 

  • Debnath SC (2010) A scaled-up system for in vitro multiplication of thidiazuron-induced red raspberry shoots using a bioreactor. J Hort Sci Biotechnol 85:94–100

    Article  CAS  Google Scholar 

  • Debnath SC (2011a) Bioreactors and molecular analysis in berry crop micropropagation – a review. Can J Plant Sci 91:147–157

    Article  Google Scholar 

  • Debnath SC (2011b) Adventitious shoot regeneration in a bioreactor system and EST-PCR based clonal fidelity in lowbush blueberry (Vaccinium angustifolium Ait.) Sci Hort 128:124–130

    Article  CAS  Google Scholar 

  • Debnath SC (2013) Propagation strategies and genetic fidelity in strawberries. Int J Fruit Sci 13:3–18

    Article  Google Scholar 

  • Debnath SC (2014a) Strawberry micropropagation and somaclonal variation. In: Malone N (ed) Strawberries: cultivation, antioxidant properties and health benefits. Nova Science Publishers, Hauppauge, New York, pp 93–108

    Google Scholar 

  • Debnath SC (2014b) Bioreactor-induced adventitious shoot regeneration affects genotype-dependent morphology but maintains clonal fidelity in red raspberry. In Vitro Cell Dev Biol – Plant 50:777–788

    Article  CAS  Google Scholar 

  • Debnath SC (2016a) Genetic diversity and erosion in berries. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants. Springer Int Publ, Switzerland, pp 75–129

    Chapter  Google Scholar 

  • Debnath SC (2016b) Corrigendum: bioreactors and molecular analysis in berry crop micropropagation – a review. Can J Plant Sci 96:382–383

    Article  Google Scholar 

  • Debnath SC (2017) Molecular approaches for monitoring clonal fidelity and epigenetic variation in in vitro-derived strawberry plants. Acta Hort 1156:83–87

    Article  Google Scholar 

  • Debnath SC, McRae KB (2001) An efficient in vitro shoot propagation of cranberry (Vaccinium macrocarpon Ait.) by axillary bud proliferation. In Vitro Cell Dev Biol Plant 37:243–249

    Google Scholar 

  • Debnath SC, McRae KB (2001b) In vitro culture of lingonberry (Vaccinium vitis-idaea L.): the influence of cytokinins and media types on propagation. Small Fruits Rev 1:3–19

    Article  CAS  Google Scholar 

  • Debnath SC, Vyas P, Goyali JC, Igamberdiev AU (2012) Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition. Can J Plant Sci 92:1065–1073

    Article  Google Scholar 

  • Debnath SC, McKenzie D, Bishop G, Percival D (2016) Strategic approaches to propagate berry crop nuclear stock using a bioreactor. Acta Hort 1113:47–52

    Article  Google Scholar 

  • Detrez C, Ndiaye S, Dreyfus B (1994) In vitro regeneration of the tropical multipurpose leguminous tree Sesbania grandiflora from cotyledon explants. Plant Cell Rep 14(2–3):87–93

    CAS  PubMed  Google Scholar 

  • Dijkstra J (1993) Research on strawberries focuses on healthy plant material. Expensive cultural method requires excellent material. Fmitteelt – Den-Haag 83:14–15

    Google Scholar 

  • Donnoli R, Sunseri F, Martelli G, Greco I (2001) Somatic embryogenesis, plant regeneration and genetic transformation in Fragaria spp. Acta Hort 560:235–240

    Article  CAS  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  • Finn C (1999) Temperate berry crops. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 324–334

    Google Scholar 

  • Foley SL, Debnath SC (2007) Influence of in vitro and ex vitro propagation on anthocyanin content and antioxidant activity of lingonberries. J Hort Sci Biotechnol 82:114–118

    Article  CAS  Google Scholar 

  • Galletta GJ, Bringhurst RS (1990) Strawberry management. In: Galletta GJ, Himelrick DG (eds) Small fruit crop management. Prentice Hall, Englewood Cliffs, pp 83–156

    Google Scholar 

  • Galletta GJ, Himelrick DG (1990) The small fruit crop. In: Galletta GJ, Himelrick DG (eds) Small fruit crop management. Prentice Hall, Englewood Cliffs, pp 1–13

    Google Scholar 

  • Gaspar T (1991) Vitrification in micropropagation. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, high-tech and micropropagation I, vol vol 17. Springer Verlag, Berlin, pp 116–126

    Google Scholar 

  • Gaspar TH, Coumans M (1987) Root formation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol. 2. Specific principles and methods: growth and developments. Martinus Nijhoff Publ, Dordrecht, pp 202–217

    Chapter  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1. The technology. Exegetics Ltd, Edington. 574 pp

    Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Exegetics Ltd, Reading

    Google Scholar 

  • Ghosh A, Igamberdiev AU, Debnath SC (2017) Detection of DNA methylation pattern in thidiazuron-induced blueberry callus using methylationsensitive amplification polymorphism. Biol Plant 61:511–519

    Article  CAS  Google Scholar 

  • Goyali GC, Igamberdiev AU, Debnath SC (2015) Propagation methods affect fruit morphology and antioxidant properties but maintain clonal fidelity in lowbush blueberry. Hortscience 50:888–896

    CAS  Google Scholar 

  • Graham J (2005) Fragaria strawberry. In: Litz R (ed) Biotechnology of fruit and nut crops. Biotechnology in agriculture series no. 29. CAB International, Wallingford, pp 456–474

    Chapter  Google Scholar 

  • Gustavsson BA, Stanys V (2000) Field performance of ‘Sanna’ lingonberry derived by micropropagation vs. stem cuttings. Hortscience 35:742–744

    Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Math Naturwiss Kl Kais Akad Wiss Wien 111:69–92

    Google Scholar 

  • Haddadi F, Aziz MA, Kamaladini H, Ravanfar SA (2013) Thidiazuron- and zeatin-induced high-frequency shoot regeneration from leaf and shoottip explants of strawberry. HortTechnology 23:276–281

    CAS  Google Scholar 

  • Häkkinen SH, Törrönen AR (2000) Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivars, cultivation site and technique. Food Res Int 33:517–524

    Article  Google Scholar 

  • Hancock JF, Maas JL, Shanks CH, Breen PJ, Luby JJ (1991) Strawberries (Fragaria). Acta Hort 290:491–548

    Article  Google Scholar 

  • Hanhineva K, Kokko H, Kärenlampi S (2005) Shoot regeneration from leaf explants of five strawberry (Fragaria × ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cell Dev Biol – Plant 41:826–831

    Article  CAS  Google Scholar 

  • Hannig E (1904) Zur physiologie pflanzlicher embryonen. I. Ueber die cultur von cruciferenembryonen ausserhalb des embryosacks. Bot Ztg 62:45–80

    Google Scholar 

  • Hare PD, Staden J, Van Staden J (1994) Inhibitory effect of TDZ on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol 35:1121–1125

    Article  CAS  Google Scholar 

  • Harris GK, Gupta A, Nines RG, Kresty LA, Habib SG, Frankel WL, LaPerle K, Gallaher DD, Schwartz SJ, Stoner GD (2001) Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2#-deoxyguanosine levels in the Fischer 344 rat. Nutr Cancer 40:125–133

    Article  CAS  PubMed  Google Scholar 

  • Henry Y, Nato A, DeBuyser J (1998) Genetic fidelity of plants regenerated from somatic embryos in cereals. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Acad Publ, Dordrecht, pp 65–80

    Chapter  Google Scholar 

  • Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Husaini AM, Abdin MZ (2007) Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cell Dev Biol Plant 43:576–584

    Google Scholar 

  • Husaini AM, Aquil S, Bhat M, Qadri T, Kamaluddin MZ, Abdin MZ (2008) A high-efficiency direct somatic embryogenesis system for strawberry (Fragaria × ananassa Duch.) cultivar Chandler. J Crop Sci Biotech 11:107–110

    Google Scholar 

  • Husaini AM, Mercado JA, da Silva JAT, Schaart JG (2011) Review of factors affecting organogenesis, somatic embryogenesis and agrobacterium tumefaciens-mediated transformation of strawberry. Gen Genom Genomics (Spec Issue I) 5:1–11

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Kaeppler SM, Phillips RL, Olhoft P (1998) Molecular basis of heritable tissue culture induced variation in plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Current plant science and biotechnology in agriculture, vol 32. Kluwer Acad Publ, Dordrecht, pp 465–484

    Chapter  Google Scholar 

  • Kaldmäe H, Starast M, Karp K, Paal T (2006) Effect of donor plant physiological condition on in vitro establishment of Vaccinium angustifolium shoot explants. Acta Hort 715:433–438

    Article  Google Scholar 

  • Kaushal K, Nath AK, Kaundal P, Sharma DR (2004) Studies on somaclonal variation in strawberry (Fragaria × ananassa Duch.) cultivars. Acta Hortic 662:269–275

    Google Scholar 

  • Keßler M, ten Hoopen HJG, Heijnen JJ, Fumsaki S (1997) O2 uptake rate measurements as a novel tool to study shear effects on suspended strawberry cells. Biotechnol Tech 11:507–510

    Article  Google Scholar 

  • Kohlenbach HW (1959) Streckungs- und Teilungswachstum isolerter Mesophyllzellen von Macleaya cordata. Naturwissenschaft 46:116–117

    Google Scholar 

  • Kordestani GK, Karami O (2008) Picloram-induced somatic embryogenesis in leaves of strawberry (Fragaria Ananassa L.) Acta Biol Cracov Ser Bot 50:69–72

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Macheix JJ, Sapis JC, Fleuriet A (1991) Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit Rev Food Sci Nutr 30:441–486

    Article  CAS  PubMed  Google Scholar 

  • Marcotrigiano M, McGlew SP, Hackett G, Chawla B (1996) Shoot regeneration from tissue-cultured leaves of the American cranberry (Vaccinium macrocarpon). Plant Cell Tissue Organ Cult 44:195–199

    Article  Google Scholar 

  • Mazur WM, Uehara M, Wahala K, Adlercreutz H (2000) Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr 83:381–387

    CAS  PubMed  Google Scholar 

  • McCown BH, Zeldin EL (2005) Vaccinium spp. cranberry. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publ, Wallingford, pp 247–261

    Chapter  Google Scholar 

  • Minocha SC (1987) Plant growth regulators and morphogenesis in cell and tissue culture of forest trees. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol. I. Martinus Nijhoff Publ, Dordrecht, pp 50–66

    Chapter  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogal Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N’-1,2,3-thiadiazol-5-urea (thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Turner JE, Mujer CV (1987) Biological and biochemical effects of cytokinin active phenylurea derivatives in tissue culture systems. Hortscience 22:1194–1196

    CAS  Google Scholar 

  • Mullin RH, Schlegel DE (1976) Cold storage maintenance of strawberry meristem plantlets. Hortscience 11:100–101

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Murti RH, Debnath SC, Yeoung YR (2012) Effect of high concentration of thidiazuron (TDZ) combined with 1H-indole-3-butanoic acid (IBA) on Albion strawberry (Fragaria × ananassa) cultivar plantlets induction. Afr J Biotechnol 11:14696–14702

    CAS  Google Scholar 

  • Nakajima I, Matsuda N (2003) Somatic embryogenesis from filaments of Vitis vinifera L, Vitis labruscana Bailey. Vitis 42:53–54

    Google Scholar 

  • Neto CC (2007) Review – cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664

    Article  CAS  PubMed  Google Scholar 

  • Novelli S (2003) Developments in berry production and use. Bi-weekly Bull Agric Agri-Food Can 16(21):5–6

    Google Scholar 

  • Oláh R, Szegedi E, Ruthner S, Korbuly J (2003) Thidiazuron-induced regeneration and genetic transformation of grapevine rootstocks varieties. Vitis 42:133–136

    Google Scholar 

  • Paek KY, Han BH (1989) Physiological, biochemial and morphological characteristics of vitrified shoot regenerated in vitro. J Kor Soc Plant Tiss Cult 18:151–162

    Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300

    Article  Google Scholar 

  • Passey AJ, Barrett KJ, James DJ (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep 21:397–401

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Oliveira MM, Pais MSS (1992) Micropropagation and simultaneous rooting of Actinidia deliciosa var. deliciosa ‘Hayward’. Hortscience 27:443–445

    Google Scholar 

  • Piola F, Rohr R, Heizmann P (1999) Rapid detection of genetic variation within and among in vitro propagated cedar (Cedrus libani Loudon) clones. Plant Sci 141:159–163

    Article  CAS  Google Scholar 

  • Popescu AN, Isac VS, Coman MS, Radulescu MS (1997) Somaclonal variation in plants regenerated by organogenesis from callus culture of strawberry (Fragaria Ananassa). Acta Hort 439:89–96

    Article  Google Scholar 

  • Preece JE, Huetteman CA, Ashby WC, Roth PL (1991) Micro- and cutting propagation of silver maple. II. Genotype and provenance affect performance. J Am Soc Hort Sci 116:149–155

    Google Scholar 

  • Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Qu L, Polashock J, Vorsa N (2000) A high efficient in vitro cranberry regeneration system using leaf explants. Hortscience 35:948–952

    CAS  Google Scholar 

  • Rancillac M, Nourrisseau JG (1989) Micropropagation and strawberry plant quality. Acta Hort 265:343–348

    Article  Google Scholar 

  • Rissanen T, Voutilainen S, Virtanen J, Venho B, Vanharante M, Mursu J, Salonen J (2003) Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic heart disease risk factor (KIHD) study. J Nutr 133:199–204

    Article  CAS  PubMed  Google Scholar 

  • Rowland LJ, Hammerschlag FA (2005) Vaccinium spp. blueberry. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publ, Wallingford, pp 222–246

    Chapter  Google Scholar 

  • Sandal I, Bhattacharya A, Ahuja PS (2001) An efficient liquid culture system for tea shoot proliferation. Plant Cell Tissue Organ Cult 65:75–80

    Article  CAS  Google Scholar 

  • Scott TK (1972) Auxins and roots. Annu Rev Plant Physiol 23:235258

    Article  Google Scholar 

  • Shibli RA, Smith MAL (1996) Direct shoot regeneration from Vaccinium pahalae (ohelo) and V. myrtillus (bilberry) leaf explants. Hortscience 31:1225–1228

    Google Scholar 

  • Simon S (1908) Experimentelle untersuchungen über die differenzierungsvorgange im callusgewebe von holzgewachsen. Jahrb Wiss Bot 45:351–478

    Google Scholar 

  • Skirvin RM, Motoike S, Coyner M, Norton MA (2005) Rubus spp. cane fruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publ, Wallingford, pp 566–582

    Chapter  Google Scholar 

  • Soneji JR, Rao PS, Mhatre M (2002) Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas comosus L., Merr.) J Hort Sci Biotechnol 77:28–32

    Article  CAS  Google Scholar 

  • Steward FC, Ammirato PV, Mapes MD (1970) Growth and development of totipotent cells: some problems, procedures and prospectives. Ann Bot 34:761–787

    Article  CAS  Google Scholar 

  • Swartz HJ, Bors R, Mohamed F, Naess SK (1990) The effect of in vitro pretreatments on subsequent shoot organogenesis from excised Rubus and Malus leaves. Plant Cell Tissue Organ Cult 21:179–184

    Google Scholar 

  • Thiem B (2003) Rubus chamaemorus L. – a boreal plant rich in biologically active metabolites: a review. Biol Lett 40:3–13

    CAS  Google Scholar 

  • Thomas JC, Katterman FR (1986) Cytokinin activity induced by thidiazuron. Plant Physiol 18(1):681–683

    Article  Google Scholar 

  • Trehane J (2004) Blueberries, cranberries and other Vacciniums. Timber Press, Portland

    Google Scholar 

  • Vander Kloet SP (1988) The genus Vaccinium in North America. Agr Can Publ, 1828, Canada

    Google Scholar 

  • Vander Kloet SP, Dickinson TA (2009) A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. J Plant Res 122:253–268

    Article  CAS  PubMed  Google Scholar 

  • Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron: substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99:1704–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujović T, RužićĐ CR, Momirović GŠ (2010) Adventitious regeneration in blackberry (Rubus fruticosus L.) and assessment of genetic stability in regenerants. Plant Growth Regul 61(61):265–275

    Article  CAS  Google Scholar 

  • Vyas P, Debnath SC, Igamberdiev AU (2013) Metabolism of glutathione and ascorbate in lingonberry cultivars during in vitro and ex vitro propagation. Biol Plant 57:603–612

    Article  CAS  Google Scholar 

  • Vyas P, Curran NH, Igamberdiev AU, Debnath SC (2015) Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Can J Plant Sci 95:663–669

    Article  CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC Press, Boca Raton

    Google Scholar 

  • Yau MH, Che CT, Liang SM, Kong YC, FongWP (2002) An aqueous extract of Rubus chingii fruits protects primary rat hepatocytes against tert-butyl hydroperoxide induced oxidative stress. Life Sci 72:329–338

    Article  CAS  PubMed  Google Scholar 

  • Yonghua Q, Shanglong Z, Asghar S, Lingxiao Z, Qiaoping Q, Kunsong C, Changjie X (2005) Regeneration mechanism of Toyonokastrawberry under different color plastic films. Plant Sci 168:1425–1431

    Article  CAS  Google Scholar 

  • Zhang Q, Folta KM, Thomas M, Davis TM (2014) Somatic embryogenesis, tetraploidy, and variant leaf morphology in transgenic diploid strawberry (Fragaria vesca subspecies vesca ‘Hawaii 4’). BMC Plant Biol 14:23. https://doi.org/10.1186/1471-2229-14-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv M (1991a) Quality of micropropagated plants – vitrification. In Vitro Cell Dev Biol Plant 27:64–69

    Article  Google Scholar 

  • Ziv M (1991b) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer AcadPubl, Dordrecht, pp 45–69

    Chapter  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ Cult 81:277–285

    Article  Google Scholar 

  • Ziv M, Chen J, Vishnevetsky J (2003) Propagation of plants in bioreactors: prospects and limitations. Acta Hort 616:85–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir C. Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, S.C. (2018). Thidiazuron in Micropropagation of Small Fruits. In: Ahmad, N., Faisal, M. (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore. https://doi.org/10.1007/978-981-10-8004-3_6

Download citation

Publish with us

Policies and ethics