Advertisement

Use of TDZ for Micropropagation of Some Mediterranean Crop Species

  • Mouaad Amine Mazri
  • Ilham Belkoura
  • Reda Meziani
Chapter

Abstract

Plant tissue culture is now a widely used technology for many applications. Plant growth regulators (PGRs) play an important role in this technology. Auxins and cytokinins are by far the most commonly used PGR classes in plant tissue culture. N-Phenyl-N′-1,2,3-thiadiazol-5-ylurea, also known as thidiazuron or TDZ, is a synthetic PGR and a phenylurea derivative with a strong cytokinin-like activity. TDZ has been successfully used for the micropropagation of several plant species and sometimes was reported to be more effective than adenine-based cytokinins or to fulfil both the auxin and the cytokinin requirement for in vitro growth and differentiation. In this chapter, we will focus on the use of TDZ for the micropropagation of six Mediterranean crop species. Thus, we will report some findings from past and recent studies in which TDZ was employed for in vitro culture and regeneration of Olea europaea L., Citrus spp., Ceratonia siliqua L., Punica granatum L., Ficus carica L., and Prunus dulcis Mill. We will also highlight the specific action of TDZ depending on its concentration as well as the species, the genotype, the explant, and the concentration of the associated PGRs.

Keywords

Almond Carob Citrus Fig Olive Pomegranate TDZ 

References

  1. Ainsley PJ, Collins GG, Sedgley M (2000) Adventitious shoot regeneration from leaf explants of almond (Prunus dulcis mill.) In Vitro Cell Dev Biol Plant 36:470–474CrossRefGoogle Scholar
  2. Ainsley PJ, Hammerschlag FA, Bertozzi T, Collins GG, Sedley M (2001) Regeneration of almond from immature seed cotyledons. Plant Cell Tissue Organ Cult 67:221–226CrossRefGoogle Scholar
  3. Al-Wasel ASA (1999) In vitro clonal propagation of “Al-Belehi” pomegranate (Punica granatum L.) J King Saud Univ 11:3–14Google Scholar
  4. Arndt FJ, Rusch R, Stilfried HV (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:99Google Scholar
  5. Bahrami MK, Azar AM, Dadpour MR (2010) Influence of thidiazuron in direct shoot regeneration from segments of in vitro leaves, and axillary and apical buds of olive (Olea europaea). Acta Hortic 884:383–389CrossRefGoogle Scholar
  6. Bhandary SK, Kumari SN, Bhat VS, Sharmila KP, Bekal MP (2012) Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J Health Sci 2:34–38CrossRefGoogle Scholar
  7. Böhmer P, Meyer B, Jacobsen HJ (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15:26–29CrossRefPubMedGoogle Scholar
  8. Bolling BW, Dolnikowski G, Blumberg JB, Chen CYO (2010) Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem 122:819–825CrossRefPubMedPubMedCentralGoogle Scholar
  9. Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tissue Organ Cult 103:237–242CrossRefGoogle Scholar
  10. Carimi F, De Pasquale F (2003) Micropropagation of Citrus. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Deventer, pp 589–619CrossRefGoogle Scholar
  11. Cavallaro V, Barbera AC, Maucieri C, Gimma G, Scalisi C, Patanè C (2016) Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol Eng 95:557–566CrossRefGoogle Scholar
  12. Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.) Plant Cell Tissue Organ Cult 102:153–162Google Scholar
  13. Chen JT, Chang WC (2006) Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol Plant 50:169–173CrossRefGoogle Scholar
  14. Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87:145–153CrossRefGoogle Scholar
  15. Choudhary R, Chaudhury R, Malik SK, Sharma KC (2015) An efficient regeneration and rapid micropropagation protocol for almond using dormant axillary buds as explants. Indian J Exp Biol 53:462–467PubMedGoogle Scholar
  16. Chu C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press, Peking pp 43–50Google Scholar
  17. Conde C, Delrot S, Geros H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562CrossRefPubMedGoogle Scholar
  18. Costa M, Miguel C, Oliveira MM (2007) Improved conditions for Agrobacterium-mediated transformation of almond. Acta Hortic 738:575–581CrossRefGoogle Scholar
  19. Custòdio L, Carneiro MF, Romano A (2005) Microsporogenesis and anther culture in carob tree (Ceratonia siliqua L.) Sci Hortic 104:65–77CrossRefGoogle Scholar
  20. Dhage SS, Pawar BD, Chimote VP, Jadhav AS, Kale AA (2012) In vitro callus induction and plantlet regeneration in fig (Ficus carica L.) J Cell Tissue Res 12:1–6Google Scholar
  21. Dhage SS, Chimote VP, Pawar BD, Kale AA, Pawar SV, Jadhav AS (2015) Development of an efficient in vitro regeneration protocol in fig (Ficus carica L.) J Appl Hortic 17:160–164Google Scholar
  22. Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Sci Hortic 119:246–251CrossRefGoogle Scholar
  23. Dueñas M, Perez-Alonso JJ, Santos-Buelga C, Escrinano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.) J Food Compos Anal 21:107–115CrossRefGoogle Scholar
  24. Ferrandez-Villena M, Ferrandez-Garcia CE, Andreu-Rodriguez J, Ferrandez-Garcia MT, Garcia-Ortuño T (2013) Effect of pressing conditions on physical and mechanical properties of binderless boards made from almond hulls (Prunus dulcis (Mill.) DA Webb). In: Proceedings of the 41 international symposium on agricultural engineering, 19–22 February, Opatija, pp 393–397Google Scholar
  25. Flaishman M, Rodov V, Stover E (2008) The fig: botany, horticulture and breeding. Hortic Rev 34:113–196Google Scholar
  26. García-Férriz L, Ghorbel RR, Ybarra M, Marì A, Belaj A, Trujillo I (2002) Micropropagation from adult olive trees. Acta Hortic 586:879–882CrossRefGoogle Scholar
  27. Germanà MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22:181–187CrossRefPubMedGoogle Scholar
  28. Germanà MA, Macaluso L, Patricolo G, Chiancone B (2008) Morphogenic response in vitro of epicotyl segments of Citrus macrophylla. Plant Biosyst 142:661–664CrossRefGoogle Scholar
  29. Germanà MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange [Citrus sinesis (L.) Osb. x Poncirius trifoliata (L.) Raf.] Plant Cell Tissue Organ Cult 106:299–307CrossRefGoogle Scholar
  30. Golozan AB, Shekafandeh A (2010) Effects of plant growth regulators on pomegranate (Punica granatum L. cv. Rabbab) shoot proliferation and rooting. Adv Hortic Sci 24:207–211Google Scholar
  31. González-Mas MC, Llosa MJ, Quijano A, Forner-Giner MA (2009) Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Hort Sci 44:280–283Google Scholar
  32. Gunes E, Gubbuk H, Ayala-Silva T, Gozlekci S, Ercisli S (2013) Effects of various treatments on seed germination and growth of carob (Ceratonia siliqua L.) Pak J Bot 45:1173–1177Google Scholar
  33. Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multidimensional plant growth regulator. Afr J Biotechnol 10:8984–9000CrossRefGoogle Scholar
  34. Hagidimitriou M, Katsiotis A, Menexes G, Pontikis C, Loukas M (2005) Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) marker and morphological traits. J Am Soc Hortic Sci 130:211–217Google Scholar
  35. Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22:16–24CrossRefPubMedGoogle Scholar
  36. Kanwar K, Joseph J, Deepika R (2010) Comparison of in vitro regeneration pathways in Punica granatum L. Plant Cell Tissue Organ Cult 100:199–207CrossRefGoogle Scholar
  37. Khalilsaraee MF, Meti NT (2016) Embryogenic cell lines and germination of shoot from somatic embryos of Punica granatum ‘Ganesh’. Acta Hortic 1131:11–15Google Scholar
  38. Khalilsaraie MF, Meti NT, Karibasappa GS (2015) Maintenance of somatic embryos and cell lines from floral parts of Punica granatum L. ‘Ganesh’. Acta Hortic 1083:455–460Google Scholar
  39. Kim KM, Kim MY, Yun PY, Chandrasekhar T, Lee HY, Song PS (2007) Production of multiple shoots and plant regeneration from leaf segments of fig tree (Ficus carica L.) J Plant Biol 50:440–446CrossRefGoogle Scholar
  40. Laskar MA, Hynniewta M, Rao CS (2009) In vitro propagation of Citrus indica Tanaka-an endangered progenitor species. Indian J Biotechnol 8:311–316Google Scholar
  41. Li JW, Si SW, Cheng JY, Li JX, Liu JQ (2013) Thidiazuron and silver nitrate enhanced gynogenesis of unfertilized ovule cultures of Cucumis sativus. Biol Plant 57:164–168CrossRefGoogle Scholar
  42. Liu CZ, Murch SJ, Demerdash MEL, Saxena PK (2003) Regeneration of the Egyptian medicinal plant Artemisia judaica L. Plant Cell Rep 21:525–530PubMedGoogle Scholar
  43. Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29P:92–96CrossRefGoogle Scholar
  44. Maestri D, Martínez M, Bodoira R, Rossi Y, Oviedo A, Pierantozzi P, Torres M (2015) Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina. Food Chem 170:55–61CrossRefPubMedGoogle Scholar
  45. Mars M (2003) Fig (Ficus carica L.) genetic resources and breeding. Acta Hortic 605:19–27CrossRefGoogle Scholar
  46. Mazri MA (2015) Role of cytokinins and physical state of the culture medium to improve in vitro shoot multiplication, rooting and acclimatization of date palm (Phoenix dactylifera L.) cv. Boufeggous. J Plant Biochem Biotechnol 24:268–275CrossRefGoogle Scholar
  47. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic 159:88–95CrossRefGoogle Scholar
  48. Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissues. Plant Cell Tissue Organ Cult 32:283–288CrossRefGoogle Scholar
  49. Mencuccini M, Corona C, Mariotti M (1991) Plant regeneration and first attempt of in vitro genetic improvement of olive (cv Moraiolo). Acta Hortic 300:261–264Google Scholar
  50. Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, Anjarne M, Ait Chitt M, Alem C (2016) Organogenesis of Phoenix dactylifera L. cv. Mejhoul: influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Sci Hortic 204:145–152CrossRefGoogle Scholar
  51. Miguel CM, Druart P, Oliveira MM (1996) Shoot regeneration from adventitious buds induced on juvenile and adult almond (Prunus dulcis mill.) explants. In Vitro Cell Dev Biol Plant 32:148–153CrossRefGoogle Scholar
  52. Mithila J, Hall JC, Victor JMR, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentration and somatic embryogenesis at high concentration on leaf and petiole explants of African violet (Saintpaulia ionantha WEndl.) Plant Cell Rep 21:408–414CrossRefPubMedGoogle Scholar
  53. Mohamed AI, Elnour EG, Mahfouz SA (2009) Production of multiple shoots from carob tree (Ceratonia siliqua) using tissue culture technique. Acta Hortic 812:211–215CrossRefGoogle Scholar
  54. Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N′-(1,2,3- thiadiazol-5-yl)-urea (thidiazuron). Phytochemistry 21:1509–1511CrossRefGoogle Scholar
  55. Müller GC, Xue RD, Schlein Y (2010) Seed pods of the carob tree Ceratonia siliqua are a favored sugar source for the mosquito Aedes albopictus in coastal Israel. Acta Trop 116:235–239CrossRefPubMedGoogle Scholar
  56. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  57. Murashige T, Tucker DPH (1969) Growth factor requirements of citrus tissue culture. In: Chapman HD (ed) Proceedings of the 1st international citrus symposium, Riverside, Mar 1968, vol 3, pp 1155–1161Google Scholar
  58. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275CrossRefGoogle Scholar
  59. Naik SK, Pattnaik S, Chand PK (1999) In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci Hortic 79:175–183CrossRefGoogle Scholar
  60. Narváez I, Mercado JA, Jiménez-Díaz R, Pliego-Alfaro F (2016) Somatic embryogenesis in explants of adult wild olive trees. URL : http://riuma.uma.es/xmlui/handle/10630/11064
  61. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefPubMedGoogle Scholar
  62. Patarra JDD (2009) Evaluation of the in vitro biological activities of extracts from carob tree and Mediterranean oaks. Master Dissertation in Biological Engineering. Universidade do Algarve, PortugalGoogle Scholar
  63. Paudyal KP, Haq N (2000) In vitro propagation of pummelo (Citrus grandis L. Osbeck). In Vitro Cell Dev Biol Plant 36:511–516CrossRefGoogle Scholar
  64. Pelah D, Kaushik RA, Mizrahi Y, Sitrit Y (2002) Organogenesis in the vine cactus Selenicereus megalanthus using thidiazuron. Plant Cell Tissue Organ Cult 71:81–84CrossRefGoogle Scholar
  65. Pérez-García F (2009) Germination characteristics and intra-population variation in carob (Ceratonia siliqua L.) seeds. Spanish J Agri Res 7:398–406CrossRefGoogle Scholar
  66. Perri E, Parlati MV, Rugini E (1994a) Isolation and culture of olive (Olea europaea L.) cultivar protoplasts. Acta Hortic 356:51–53CrossRefGoogle Scholar
  67. Perri E, Parlati MV, Mule R, Fodale AS (1994b) Attempts to generate haploid plants from in vitro cultures of Olea europaea L. anthers. Acta Hortic 356:47–50CrossRefGoogle Scholar
  68. Rai RV (2002) Rapid clonal propagation of Nothapodytes foetida (Wight) Sleumer- a threatened medicinal tree. In Vitro Cell Dev Biol Plant 38:347–351CrossRefGoogle Scholar
  69. Ramezani S, Shekafandeh A (2009) Callus induction from anther explant of olive (Olea europaea L.) influenced by plant growth regulators. Adv Env Biol 3:21–24Google Scholar
  70. Rinaldi LMR, Lambardi M (1998) In vitro germinability and ethylene biosynthesis in cytokinin-treated olive seeds (Olea europaea L.) Adv Hortic Sci 12:59–62Google Scholar
  71. Roussos PA, Pontikis CA (2002) In vitro propagation of olive (Olea europaea L.) cv. Koroneiki. Plant Growth Regul 37:295–304CrossRefGoogle Scholar
  72. Roussos PA, Dimitriou G, Voloudakis AE (2011) N-(2-chloro-4-pyridyl)-N-phenylurea (4-CPPU) enhances in vitro direct shoot organogenesis of Citrus aurantium L. epicotyl segments compared to other commonly used cytokinins. Span J Agric Res 9:504–509CrossRefGoogle Scholar
  73. Rugini E (1984) In vitro propagation of some olive (Olea europaeasativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134CrossRefGoogle Scholar
  74. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260CrossRefPubMedGoogle Scholar
  75. Rugini E, De Pace C, Gutierrez-Pesce P, Muleo R (2011) Olea. In: Chittaranjan K (ed) Wild crop relatives: genomic and breeding resources, 1st edn. Springer, Heidelberg, pp 79–117CrossRefGoogle Scholar
  76. Saad AIM, Elnour GE (2010) Induction of callus from hypocotyledons and cotyledonary leaves of Ceratonia siliqua. Acta Hortic 865:293–296CrossRefGoogle Scholar
  77. Saad H, Charrier-El Bouhtoury F, Pizzi A, Rode K, Charrier B, Ayed N (2012) Characterization of pomegranate peels tannin extractives. Ind Crop Prod 40:239–246CrossRefGoogle Scholar
  78. Sato K (2015) Influence of drought and high temperature on citrus. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer, Tokyo, pp 77–86Google Scholar
  79. Schween G, Schwenkel HG (2002) In vitro regeneration in Primula Sp. via organogenesis. Plant Cell Rep 20:1006–1010CrossRefGoogle Scholar
  80. Sen S, Dhawan V (2009) Genotypic differences in shoot multiplication among five citrus rootstocks in vitro. Acta Hortic 839:51–56CrossRefGoogle Scholar
  81. Sen S, Dhawan V (2010) Development of a highly efficient micropropagation method for the Citrus rootstock ‘Swingle’ citrumelo [Poncirus trifoliata (L.) Raf. x C. paradisi McFaden]. Int J Fruit Sci 10:65–78CrossRefGoogle Scholar
  82. Singh S, Rajam MV (2010) Highly efficient and rapid plant regeneration in Citrus sinensis. J Plant Biochem Biotechnol 19:195–202CrossRefGoogle Scholar
  83. Soliman HI, Gabr M, Abdallah N (2010) Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM Crops 1:47–58CrossRefGoogle Scholar
  84. Tegeder M, Gebhardt D, Schieder O, Pickardt T (1995) Thidiazuron-induced plant regeneration from protoplast of Vicia faba cv. Mythos. Plant Cell Rep 15:164–169CrossRefPubMedGoogle Scholar
  85. Van Le B, Ha NT, Hong LTA, Van KTT (1999) High frequency shoot regeneration from trifoliate orange (Poncirus trifoliata L. Raf.) using the thin cell later method. CR Acad Sci Paris Life Sci 322:1105–1111Google Scholar
  86. Van Staden J, Zazimalova E, George EF (2008) Plant growth regulators II: cytokinins, their analogues and antagonists. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, vol I the background, 3rd edn. Springer, Dordrecht, pp 205–226Google Scholar
  87. Yakushiji H, Mase N, Sato Y (2003) Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.) J Hortic Sci Biotechnol 78:874–878CrossRefGoogle Scholar
  88. Yaman S, Sahan M, Haykiri-Acma H, Sesen K, Kucukbayrak S (2000) Production of fuel briquettes from olive refuse and paper mill waste. Fuel Process Technol 68:23–31CrossRefGoogle Scholar
  89. Yancheva SD, Golubowicz S, Yablowicz Z, Perl A, Flaishman MA (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441CrossRefGoogle Scholar
  90. Zaen El Deen EM, El-Sayed OM, El-Sayed AEI, Hegazi GAE (2014) Studies on carob (Ceratonia siliqua L.) propagation. J Agri Vet Sci 7:31–40Google Scholar
  91. Zuccherelli G, Zuccherelli S (2002) In vitro propagation of 50 olive cultivars. Acta Hortic 586:931–934CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mouaad Amine Mazri
    • 1
  • Ilham Belkoura
    • 2
  • Reda Meziani
    • 3
  1. 1.Institut National de la Recherche Agronomique, CRRA-Marrakech, UR Agro-Biotechnologie, Laboratoire de Biotechnologie VégétaleMarrakechMorocco
  2. 2.Ecole Nationale d’Agriculture, Département des Sciences de Base, Laboratoire de Culture In VitroMeknesMorocco
  3. 3.Institut National de la Recherche Agronomique, CRRA-Errachidia, UR Systèmes Oasiens, Laboratoire National de Culture des Tissus du Palmier DattierErrachidiaMorocco

Personalised recommendations