Skip to main content

Effect of TDZ on Various Plant Cultures

  • Chapter
  • First Online:
Book cover Thidiazuron: From Urea Derivative to Plant Growth Regulator

Abstract

This chapter provides the effect of thidiazuron (TDZ) on various plant cultures. Plant cell cultures still remain to be of great benefit to many disciplines including studies, viz., physiology, mechanism, etc. Apart from plant potency, this supremacy can be attributed to the increase in number of plant growth regulators (PGRs). Growth regulators are the mile stones in plant tissue culture history. Plant growth regulators depict some interesting functions; they singly, in synergy or antagonistically, function in growth of plant. Also, their concentrations play pivotal role in plant response. These PGRs are categorized in one of the five classes of plant hormones: auxins, gibberellins (GAs), cytokinins (CKs), ethylene (C2H4), and abscisic acid (ABA). In recent years apart from natural PGRs available, different synthetic PGRs are made available. The use of thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) has been successfully demonstrated to promote axillary shoot proliferation and to encourage shoot formation in plants. Recalcitrant woody species have been great responders to TDZ, reason being its high cytokinin-like activity and better response. It facilitates initiation of multiple shoots in many recalcitrant woody tree species. It has been observed that lower concentrations (<1 μM) of TDZ show greater axillary proliferation compared to other cytokinins. Besides, it has many adverse effects on culture, viz., higher concentration of TDZ causes no shoot elongation. Thus, the present chapter reveals the effect of TDZ on various plant cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong DJ, Kim SG, Mok MC, Mok DWS (1981) Genetic regulation of cytokinin metabolism in Phaseolus tissue cultures. In: Caud-Lenoel C, Guern J (eds) Metabolism and molecular activities of Cytokinins. Springer-Verlag, Berlin, p 97

    Chapter  Google Scholar 

  • Arndt F, Rusch R, Stilfried HV (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:99

    Google Scholar 

  • Azeez H, Ibrahim K, Pop R, Pamfil D, Hârţa M, Bobiș O (2017) Changes induced by gamma ray irradiation on biomass production and secondary metabolites accumulation in Hypericum triquetrifolium Turra callus cultures. Ind Crop Prod 108:183–189

    Article  CAS  Google Scholar 

  • Baker BS, Bhatia SK (1993) Factors effecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblmga). Plant Cell Tissue Organ Cult 35:273–277

    Google Scholar 

  • Baskaran P, Van Staden J (2013) Rapid in vitro micropropagation of Agapanthus praecox South Afr. Aust J Bot 86:46–50

    CAS  Google Scholar 

  • Baskaran P, Van Staden J (2017) Ultrastructure of somatic embryo development and plant propagation for Lachenalia Montana. South Afr J Bot 109:269–274

    Article  CAS  Google Scholar 

  • Bates S, Preece JE, Navarrete NE, Sarnbeek JW, van Gafbey GR, Van Sambeek JW (1992) Thidianiron stimulates shoot organogenesis and somatic embryogenesis in white ash (Frmims aimericana L). Plant Cell Tiss Organ Cult 31:21–29

    Google Scholar 

  • Biddington NL (1992) The influence of ethylene in plant tissue culture. Pl Growth Regul 11:173–187

    Article  CAS  Google Scholar 

  • Bottomley W, Kefford NP, Zwar JA, Goldacre PL (1963) Kinin activity from plant extracts. I. Biological assays and sources of activity. Aust J Biol Sci 16:395

    Article  CAS  Google Scholar 

  • Briggs BA, McCulloch SM, Edick LA (1988) Micropropagation of azaleas using thidiazuron. Acta Hortic 226:205–208

    Article  Google Scholar 

  • Cambecedes J, Duron M, Decourtye L (1991) Adventitious bud regeneration from leaf explants of the shrubby ornamental honeysuckle, Lonicera nitida Wils. cv. ‘Maigrun’: effects of thidiazuron and 2,3,5-triiodobenzoic acid. Plant Cell Rep 10:471–474

    Article  CAS  PubMed  Google Scholar 

  • Capelle SC, Mok DWS, Kirchner SC, Mok MC (1983) Effects of TDZ on cytokinin autonomy and the metabolism of N6-(DELTA2-isopentenyl) [8-14C] adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol 73:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti R, Sabbadini S, Mezzetti B (2016) The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci Hortic 207:117–124

    Article  CAS  Google Scholar 

  • Chen Y, Chang C, Chang W (2000) A reliable protocol for plant regeneration from callus culture of Phalaenopsis. In Vitro Cell Dev Bio Plant 36(5):420–423

    Article  CAS  Google Scholar 

  • Chupeau MC, Lemoine M, Chupeau Y (1993) Requirement of thidianiron for healthy protoplast development to efficient tree regeneration of a hybrid poplar (Poplus tremziia x P. alba). J Plant Physiol 141:601–609

    Google Scholar 

  • Cingoz GS, Verma SK, Gurel E (2014) Hydrogen peroxide-induced antioxidant activities and cardiotonic glycoside accumulation in callus cultures of endemic Digitalis species. Plant Physiol Biochemist 82:89–94

    Article  CAS  Google Scholar 

  • Cousineau JC, Donnelly DJ (1991) Adventitious shoot regeneration from leaf explants of tissue cultured and greenhouse-grown raspberry. Plant Cell Tissue Organ Cult 27:249–255

    Article  Google Scholar 

  • Debergh P, Aitken-Christie J, Cohen D, Grout B, Arnold S, von Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tissue Organ Cult 30:135–140

    Article  Google Scholar 

  • Desai M, Pramod HJ, Upadhya V, Sailo L, Hegde HV, Pai SR (2016) In vitro rapid multiplication protocol for ex situ conservation of the rare, endemic medicinal plant Achyranthes coynei. Planta Med Lett 3(04):e87–e90

    Google Scholar 

  • Devi K, Sharma M, Ahuja PS (2014) Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.) South Afr J Bot 93:207–216

    Article  Google Scholar 

  • Dina ARJM, Ahmad FI, Wagiran A, Samad AA, Rahmat Z, Sarmidi MR (2016) Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J Biol Sci 23(1):S69–S77

    Article  Google Scholar 

  • Entsch B, Letham DS, Parker CW, Summons RE & Gollnow BI (1980) Metabolites of cytokinins (Skoog, ed), pp 109–118

    Google Scholar 

  • Fasolo F, Zimmerman RH, Fordham I (1989) Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult 16:75–87

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J Plant Physiol 161(9):1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Gambhir G, Kumar P, Srivastava DK (2017) High frequency regeneration of plants from cotyledon and hypocotyl cultures in Brassica oleracea cv. Pride of India. Biotech Rep 15:107–113

    Article  Google Scholar 

  • George EF, Hall MA, Klerk GJD (2008) Plant growth regulators II: cytokinins, their analogues and antagonists. In: George EF, Hall MA, Klerk GJD (eds) Plant propagation by tissue culture. Springer, Dordrecht

    Google Scholar 

  • Gill R, Gerrath JM, Saxena PK (1993) High-frequency direct somatic embryogenesis in thin layer cultures of hybrid seed geranium (Pelargonium X hortorum). Can J Bot 71:408–413

    Article  Google Scholar 

  • Gondval M, Chaturvedi P, Gaur AK (2016) Thidiazuron – induced high frequency establishment of callus cultures and plantlet regeneration in Aconitum balfourii Stapf.: an endangered medicinal herb of North-West Himalayas. Indian J Biotechnol 15:251–255

    Google Scholar 

  • Hecht SM (1980) Probing the cytokinin receptor site(s) (Skoog F, ed), pp 144–160

    Google Scholar 

  • Henny RI (1995) Thidiazuron increases basal bud and shoot development in Spathiphyllum ‘petite’. Plant Growth Reg Soc Ame Quart 23:13–16

    Google Scholar 

  • Huan LVT, Takamura T, Tanaka M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166(6):1443–1449

    Article  CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Google Scholar 

  • Hutchinson MJ, Saxena PK (1996b) Role of purine metabolism in TDZ-induced somatic embryogenesis of geranium (Pelargonium X hortorum) hypocotyls cultures. Physiol Plant 98:517–522

    Article  CAS  Google Scholar 

  • Hutchinson MJ, Murr DP, Krishnaraj S, Senaratna T, Saxena PK (1997a) Does ethylene play a role in TDZ-regulated somatic embryogenesis of geranium (Pelargonium X hortorum) hypocotyl cultures. In Vitro Cell Dev Biol 33P:136–141

    Article  Google Scholar 

  • Hutchinson MJ, Krishnaraj S, Saxena PK (1997b) Inhibitory effect of GA z on the development of TDZ-induced somatic embryogenesis of geranium (Pelargonium X hortorum) hypocotyl cultures. Plant Cell Rep 16:435–438

    CAS  Google Scholar 

  • Iwamura H, Masuda N, Koshimizu K, Matsubara S (1980a) Effects of 4-alkylaminopteridines on tobacco callus growth. Plant Sci Lett 20:15–18

    Article  CAS  Google Scholar 

  • Iwamura H, Fujita T, Koyama S, Koshimizu K, Kumazawa Z (1980b) Quantitative structure-activity relationship of cytokinin-active adenine and urea derivatives. Phytochemistry 19:1309–1319

    Article  CAS  Google Scholar 

  • Ji ZL, Wang SY (1988) Reduction of abscisic acid content and induction of sprouting in potato, Solanum tuberosum L., by TDZ. J Plant Growth Regul 7:37–44

    Article  CAS  Google Scholar 

  • Kaminek M, Vanek T, Motyka V (1987) Cytokinin activities of N6 -benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120

    Article  CAS  Google Scholar 

  • Kefford NP, Zwar JA, Bruce MI (1968) Antagonism of purine and urea cytokinin activities by derivatives of benzylurea. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge Press, Ottawa, pp 61–69

    Google Scholar 

  • Kshirsagar PR, Chavan JJ, Umdale SD, Nimbalkar MS, Dixit GB, Gaikwad NB (2015) Highly efficient in vitro regeneration, establishment of callus and cell suspension cultures and RAPD analysis of regenerants of Swertia lawii Burkill. Biotech Rep 6:79–84

    Article  Google Scholar 

  • Kumar V, Moyo M, Van Staden J (2016) Enhancing plant regeneration of Lachenalia viridiflora, a critically endangered ornamental geophyte with high floricultural potential. Sci Hortic 211:263–268

    Article  CAS  Google Scholar 

  • Lenzner S, Zoglauer K, Schieder O (1995) Plant regeneration from protoplasts of sugar beet (Beta vulgaris). Physiol Plant 94:342–350

    Google Scholar 

  • Lu C (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol 29:92–96

    Article  Google Scholar 

  • Mahendran G, Bai VN (2016) Direct somatic embryogenesis of Malaxis densiflora (A. Rich.) Kuntze J Genet Eng Biotechnol 14(1):77–81

    Article  Google Scholar 

  • Malik KA, Saxena PK (1992b) TDZ induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum), and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740

    Article  CAS  Google Scholar 

  • Meyer MM, Kerns HR (1986) Thidiazuron and in vitro shoot proliferation of Celtis occidentalis L. Abst. in Proceedings of the VI International Congress Plant Tissue & Cell Culture, Minneapolis, 149

    Google Scholar 

  • Meyer HJ, van Staden J (1988) In vitro multiplication of Ixia flexuosa. Hortscience 23(6):1070–1071

    Google Scholar 

  • Miller CO (1960) An assay for kinetin-like materials. Plant Physiol 35(Suppl. XXVI):26

    Google Scholar 

  • Miller CO (1961a) A kinetin-like compound in maize. Proc Nat Acad Sci USA 47:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CO (1961b) Kinetin related compounds in plant growth. Annu Rev Plant Physiol 12:395–408

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Von Saltza M, Strong FM (1955a) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Okumura FS, Von Saltza MH, Strong FM (1955b) Structure and synthesis of kinetin. J Am Chem Soc 77:2662–2663

    Article  CAS  Google Scholar 

  • Mitchell JW, Rice RR (1942) Plant growth regulators, Publisher Washington, D.C.: U.S. Dept. Agriculture Volume no.495

    Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ (1978) Differential cytokinin structure- activity relationships in Phaseolus. Plant Physiol 61:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok MC, Kim SG, Armstrong DJ, Mok DWS (1979) Induction of cytokinin autonomy by N,N-diphenylurea in tissue cultures of Phaseolus lunatus L. Proc Natl Acad Sci USA 76:3880–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Rabakoarihanta A, Kim SG (1980) Cytokinin autonomy in tissue cultures of Phaseolus: a genotype-specific and heritable trait. Genetics 94:675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ et al (1982) Cytokinin activity of Nphenyl-N′-l,2,3-thidiazol-5-ylurea (TDZ). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Turner JE et al (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. Hortscience 22:1194–1197

    CAS  Google Scholar 

  • Murthy BNS, Saxena PK (1998) Somatic embryogenesis and plant regeneration of Neem (Azadirachta indica A. Juss). Plant Cell Rep 17:469–475

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) TDZ-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Murthy BNS, Victor J, Singh R et al (1996) In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogenesis and somatic embryogenesis by TDZ. J. Plant Growth Regul 19:233–240

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267

    Article  CAS  Google Scholar 

  • Nagata R, Kawachi E, Hashimoto Y et al (1993) Cytokinin-specific binding protein in etiolated mung bean seedlings. Biochem Biophys Res Commun 19:543–549

    Article  Google Scholar 

  • van Nieuwkerk JP, Zimmerman RH, Fordham I (1986) Thidiazuron stimulation of apple shoot proliferation in vitro. Hort Science 21:516–518

    Google Scholar 

  • Pai SR, Nimbalkar MS, Pawar NV, Kedage VV, Dixit GB (2008) In vitro embryo culture and ex situ regeneration studies in Ancistrocladus heyneanus Wall. ex Grah. Plant Cell Biotechnol Mol Biol 9(3&4):1–6

    Google Scholar 

  • Pai SR, Upadhya V, Hedge HV, Joshi RK, Kholkute SD (2017) In vitro rapid multiplication and determination of triterpenoids in callus cultures of Achyranthes aspera Linn. Indian J Biotech (In Press)

    Google Scholar 

  • Pawar B, Kale P, Bahurupe J, Jadhav A, Kale A, Pawar S (2015) Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Sci 22(6):283–289

    Article  Google Scholar 

  • Preece JE, Imel MR (1991) Plant regeneration from leaf explants of Rhododendron ‘P. J. M. hybrids’. Sci Hortic 48:159–170

    Article  CAS  Google Scholar 

  • Proctor JTA, Slimmon T, Saxena PK (1996) Modulation of root growth and organogenesis in TDZ-treated ginseng (Panax quinquefolium L.) J Plant Growth Regul 20:201–208

    Article  CAS  Google Scholar 

  • Quresbi JA, Saxena PX (1992) Adventitious shoot induction and somaticembryogenesis with intact seedlings of several hybrid seed geranium (Pelragonium X hortorum bailey) varieties. Plant Cell Rep 11:443–448

    Google Scholar 

  • Reustle G, Harst M, Alleweldt G (1995) Plant regeneration of grape (Vitis sp.) protoplasts isolated from embryogenic tissue. Plant Cell Rep 15:238–241

    Google Scholar 

  • Rodaway S, Lutz AW (1985) Nitroguanidines: a new class of synthetic cytokinins. Plant Physiol 77(Suppl. 21) (Abst. 109)

    Google Scholar 

  • Rogozinska JH, Kroon C, Salemink CA (1973) Influence of alterations in the purine ring on biological activity of cytokinins. Phytochemistry 12:2087–2092

    Article  CAS  Google Scholar 

  • Rohela GK, Damera S, Bylla P, Korra R, Pendili S, Thammidala C (2016) Somatic embryogenesis and indirect regeneration in Mirabilis jalapa Linn. Mater Today Proc 3((10) B):3882–3891

    Article  Google Scholar 

  • Sanago MHM, Murch SJ, Slimmon TY et al (1995) Morphoregulatory role of TDZ: morphogenesis of root outgrowths in TDZ-treated geranium (Pelargonium X hortorum bailey). Plant Cell Rep 15:205–211

    Article  CAS  PubMed  Google Scholar 

  • Saxena PK, Malik KA, Gill R (1992) Induction by TDZ of somatic embryogenesis in intact seedlings of peanut. Man Ther 187:421–424

    CAS  Google Scholar 

  • Shantz EM, Steward FC (1955) The identification of compound A from coconut milk as 1,3-diphenylurea. J Am Chem Soc 77:6351–6353

    Article  CAS  Google Scholar 

  • Singh ND, Sahoo L, Sarin NB, Jaiwal PK (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Sci 164(3):341–347

    Article  CAS  Google Scholar 

  • Skoog F, Strong FM, Miller CO (1965) Cytokinins. Science 148:532–533

    Article  CAS  PubMed  Google Scholar 

  • Song J, Sorensen EL, Liang GH (1990) Direct embryogenesis from single mesophyll protoplasts in alfalfa (Medicugo sativa L). Plant Cell Rep 9(2):1–25

    Google Scholar 

  • Strong FM (1956) Topics in microbial chemistry. Wiley, New York, p 98

    Google Scholar 

  • Suttle JC (1984) Effects of the defoliant TDZ on leaf abscission and ethylene evolution from cotton seedlings. In: Fuchs Y, Chalutz E (eds) Ethylene. Biochemical, physiological and applied aspects. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, pp 277–278

    Google Scholar 

  • Suttle JC (1985) Involvement of ethylene in the action of the cotton defoliant TDZ. Plant Physiol 78:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC (1986) Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant TDZ. Plant Physiol 86:241–245

    Article  Google Scholar 

  • Takahashi S, Shudo K, Okamoto T, Yamada K, Isogai Y (1978) Cytokinin activities of N-phenyl-N′-(4-pyridyl)urea derivatives. Phytochemistry 17:1201–1207

    Article  CAS  Google Scholar 

  • Tariq U, Ali M, Abbasi BA (2014) Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. J Photochem Photobiol B Biol 130:264–271

    Article  CAS  Google Scholar 

  • Te-chato S, Lim M (2000) Improvement of mangosteen micropropagation through meristematic nodular callus formation from in vitro-derived leaf explants. Sci Hortic 86(4):291–298

    Article  CAS  Google Scholar 

  • Thomas JC, Katterman ER (1986) Cytokinin activity induced by TDZ. Plant Physiol 81:681–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson KS, Hertel R, Muller S et al (1973) 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid. In vitro biding to particulate cell fractions and action on auxin transport in corn coleoptiles. Planta 109:337–352

    Article  CAS  PubMed  Google Scholar 

  • Vahala T, Eriksson T (1991) Callus production from willow (Salix viminalis L.) protoplam. Plant Cell Tissue Organ Cult 27:243–248

    Google Scholar 

  • Verma SK, Sahin G, Yucesan B, Ekera I, Sahbaza N, Gurel S, Gurela E (2012) Direct somatic embryogenesis from hypocotyl segments of Digitalis trojana Ivan and subsequent plant regeneration. Ind Crops Prod 40:76–80

    Google Scholar 

  • Verma SK, Das AK, Cingoz GS, Uslu E, Gurela E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep (Amst) 10(66–74)

    Google Scholar 

  • Visser C, Qureshi JA, Gill R et al (1992) Morphoregulatory role of TDZ. Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in Geranium hypocotyl cultures. Plant Physiol 99:1704–1707

    Google Scholar 

  • Visser C, Fletcher RA, Saxena PK (1995) TDZ stimulates expansion and greening in cucumber cotyledons. Physiol Mol Biol Plants 1:21–26

    Google Scholar 

  • Wallin A, Johansson L (1989) Plant regeneration nom leaf mesophyll protoplasts of in vitro cultured shoots of a columnar apple. J Plant Physiol 135:565–570

    Google Scholar 

  • Wilcox EJ, Selby C, Wain RL (1978) Studies on plant growth-regulating substances. L. The cytokinin activity of some substituted benzyloxypurines. Ann Appl Biol 88:439–444

    Article  CAS  Google Scholar 

  • Wilcox EJ, Selby C, Wain RL (1981) The cytokinin activities of 6-α-alkylbenzyloxy-purines. Ann Appl Biol 97:221–226

    Article  CAS  Google Scholar 

  • Yip WK, Yang SF (1986) Effect of TDZ, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu N, Sheng A, Ma G, Wu G (2011) Direct and callus mediated regeneration of Curcuma soloensis Valeton (Zingiberaceae) and ex vitro performance of regenerated plants. Sci Hortic 130(4):899–905

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are indebted to the Head of Amity University, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep R. Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pai, S.R., Desai, N.S. (2018). Effect of TDZ on Various Plant Cultures. In: Ahmad, N., Faisal, M. (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore. https://doi.org/10.1007/978-981-10-8004-3_25

Download citation

Publish with us

Policies and ethics