Advertisement

Thidiazuron: Modulator of Morphogenesis In Vitro

  • Elham Tavakouli Dinani
  • Mukund R. Shukla
  • Christina E. Turi
  • J. A. Sullivan
  • Praveen K. Saxena
Chapter

Abstract

Thidiazuron (TDZ) is a substituted phenylurea first synthesized in 1967 by the Schering Corporation in Germany. Compared to other plant growth regulators, TDZ is a powerful and potent synthetic growth regulator, leading to a wide array of in vitro and in vivo applications in plants including prevention of leaf yellowing, enhanced photosynthetic activity, breaking of bud dormancy, fruit ripening, as well as proliferation of adventitious shoots, callus production, and induction of somatic embryogenesis. Despite the diversity of effects attributed to TDZ, its application and mode of action for induction of in vitro morphogenesis in plants are not well understood. Thus, this review aims to summarize current understandings for TDZ during in vitro morphogenesis in order to better understand the potential applications of TDZ for induction of in vitro morphogenesis and organogenesis.

Keywords

Thidiazuron TDZ  Morphogenesis Auxin Cytokinin Plant growth regulation 

References

  1. Ahmed MR, Anis M (2012) Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L. an important medicinal plant. App Biochem Biotechnol 168(5):957–966. https://doi.org/10.1007/s12010-012-9799-0
  2. Allen G, Schroeder J (2001) Combining genetics and cell biology to crack the code of plant cell calcium signaling. Sci STKE 102:1–7Google Scholar
  3. Amarante C, Megguer C, Blum L (2003) Effect of preharvest spraying with thidiazuron on fruit quality and maturity of apples. Rev Bras Frutic 25(1):59–62CrossRefGoogle Scholar
  4. Arndt F, Rusch R, Stillfried H (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:S-99Google Scholar
  5. Bacha N, Darkazanli K, Abdul-Kader A (2009) Direct organogenesis and plantlet multiplication from leaf explants of in vitro-grown shoots of apple (Malus domestica Borkh.) cv.‘golden delicious’ and ‘MM111’ rootstock. Fruit Veg Cereal Sci Biotechnol 3(1):28–34Google Scholar
  6. Baghel S, Bansal Y (2014) Thidiazuron promotes in vitro plant regeneration and phytochemical screening of Guizotia abyssinica Cass. A multipurpose oil crop. 1193–1217Google Scholar
  7. Baker SB, Bhatia SK (1993) Factors effecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Organ Cult 35(3):273–277CrossRefGoogle Scholar
  8. Band S, Ghadimzadeh M, Jafari M et al (2011) Direct shoot regeneration from stem nodal explants of two wild ‘Medicago’ species- ‘Medicago Scutellata’ and ‘Medicago Rigidula’. Aust J Crop Sci 5(6):668Google Scholar
  9. Basalma D, Uranbey S, Gürlek D et al (2008) TDZ-induced plant regeneration in Astragalus cicer L. Afr J of Biotech 7(8):955–959Google Scholar
  10. Bates S, Preece J, Navarrete N et al (1992) Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus americana L.) Plant Cell Tissue Organ Cult 31(1):21–29CrossRefGoogle Scholar
  11. Benezet H, Knowles C (1982) Microbial degradation of thidiazuron and its photoproduct. Arch Environ Contam Toxicol 11(1):107–110. https://doi.org/10.1007/BF01055195 PubMedCrossRefGoogle Scholar
  12. Bhagwat B, Vieiral L, Erickson L (1996) Stimulation of in vitro shoot proliferation from nodal explants of cassava by thidiazuron, benzyladenine and gibberellic acid. Plant Cell Tissue Organ Cult 46(1):1–7. https://doi.org/10.1007/BF00039690 CrossRefGoogle Scholar
  13. Böhmer P, Meyer B, Jacobsen H (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15(1):26–29. https://doi.org/10.1007/BF01690247 PubMedCrossRefGoogle Scholar
  14. Capelle S, Mok D, Kirchner S et al (1983) Effects of thidiazuron on cytokinin autonomy and the metabolism of N6-(Δ2-isopentenyl)[8-14C] adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol 73(3):796–802PubMedPubMedCentralCrossRefGoogle Scholar
  15. Casanova E, Valdés A, Fernández B et al (2004) Levels and immunolocalization of endogenous cytokinins in thidiazuron-induced shoot organogenesis in carnation. J Plant Physiol 161(1):95–104PubMedCrossRefGoogle Scholar
  16. Chakrabarty D, Trivedi P, Shri M et al (2010) Differential transcriptional expression following thidiazuron induced callus differentiation developmental shifts in rice. Plant Biol 12(1):46–59. https://doi.org/10.1111/j.1438-8677.2009.00213 PubMedCrossRefGoogle Scholar
  17. Chang C, Chang W (2000) Effect of thidiazuron on bud development of Cymbidium sinense Willd in vitro. Plant Growth Regul 30(2):171–175. https://doi.org/10.1023/A:1006341300416 CrossRefGoogle Scholar
  18. Chitra D, Padmaja G (2005) Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci Hortic 106(4):593–602CrossRefGoogle Scholar
  19. Choudhary R, Chaudhury R, Malik S et al (2015) An efficient regeneration and rapid micropropagation protocol for Almond using dormant axillary buds as explants. Indian J Exp Biol 53(7):462–467PubMedGoogle Scholar
  20. Chupeau M, Lemoine M, Chupeau Y (1993) Requirement of thidiazuron for healthy protoplast development to efficient tree regeneration of a hybrid poplar (Populus tremula x P. alba). J Plant Physiol 141(5):601–609CrossRefGoogle Scholar
  21. Corredoira E, Ballester A, Vieitez A (2008) Thidiazuron-induced high frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees. Plant Cell Tissue Organ Cult 95:197–208. https://doi.org/10.1007/s11240-008-9433-6 CrossRefGoogle Scholar
  22. Ċosiċ T, Motyka V, Raspor M et al (2015) In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): effects of genotype, explant type and applied cytokinins. Plant Cell Tissue Organ Cult 121(3):741–760. https://doi.org/10.1007/s11240-008-9433-6 CrossRefGoogle Scholar
  23. Da Cruz A, Rocha D, Iarema L et al (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Biol-Plant 50:76–83. https://doi.org/10.1007/s11627-013-9580-2 CrossRefGoogle Scholar
  24. Dabauza M, Pena L (2001) High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul 33(3):221–229. https://doi.org/10.1023/A:1017585407870 CrossRefGoogle Scholar
  25. Darvari F, Sariah M, Puad M et al (2010) Micropropagation of some Malaysian banana and plantain (Musa sp.) cultivars using male flowers. Afr J Biotechnol 9(16):2360–2366Google Scholar
  26. de Carvalho MHC, Van Le B, Zuily-Fodil Y, Thi ATP, Van KTT (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159(2):223–232CrossRefGoogle Scholar
  27. De Gyves EM, Sparks CA, Fieldsend AF et al (2001) High frequency of adventitious shoot regeneration from commercial cultivars of evening primrose (Oenothera spp.) using thidiazuron. Ann Appl Biol 138(3):329–332. https://doi.org/10.1111/j.1744-7348.2001.tb00117.x CrossRefGoogle Scholar
  28. Debnath SC (2005) Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell Dev Biol-Plant 41(5):671–676CrossRefGoogle Scholar
  29. Deroles SC, Seelye JF, Javellana J, Mullan AC (2010) In vitro propagation of Sandersonia aurantiaca Hook using thidiazuron. Plant Cell Tissue Organ Cult 102(1):115–119. https://doi.org/10.1007/s11240-010-9705-9 CrossRefGoogle Scholar
  30. Dey M, Bakshi S, Galiba G et al (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech 2(3):233–240. https://doi.org/10.1007/s13205-012-0051 PubMedCentralCrossRefGoogle Scholar
  31. Dobránszki J, da Silva J (2010) Micropropagation of apple—a review. Biotechnol Adv 28(4):462–488PubMedCrossRefGoogle Scholar
  32. Ďurkovič J, Mišalová A (2008) Micropropagation of temperate noble hardwoods: an overview. Funct Plant Sci Biotechnol 2:1–19Google Scholar
  33. El Sherif F, Khattab S (2011) Direct shoot regeneration from leaf, root and stem internode segments of male poplar trees and the molecular analysis of variant regenerated plants. J Am Sci 7(8):200–206Google Scholar
  34. Erez A, Yablowitz Z, Aronovitz A et al (2006) Dormancy breaking chemicals; efficiency with reduced phytotoxicity. In: XXVII international horticultural congress-IHC2006: international symposium on enhancing economic and environmental 772, pp 105–112Google Scholar
  35. Escalettes V, Dosba F (1993) In vitro adventitious shoot regeneration from leaves of Prunus spp. Plant Sci 90(2):201–209CrossRefGoogle Scholar
  36. Faisal M, Siddique I, Anis M (2006) In vitro rapid regeneration of plantlets from nodal explants of Mucuna pruriens – a valuable medicinal plant. Ann Appl Biol 148(1):1–6. https://doi.org/10.1111/j.1744-7348.2005.00034
  37. Faisal M, Alatar A, Hegazy A et al (2014) Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind Crop Prod 62:100–106Google Scholar
  38. Fasolo F, Zimmerman R, Fordham I (1989) Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult 16(2):75–87. https://doi.org/10.1007/BF00036516 CrossRefGoogle Scholar
  39. Faure O, Diemer F, Moja S et al (1998) Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell Tissue Organ Cult 52(3):209–212. https://doi.org/10.1023/A:1006029123437 CrossRefGoogle Scholar
  40. Fehér A, Pasternak T, Otvos K et al (2002) Induction of embryogenic competence in somatic plant cells: a review. Biol Sect Bot 51(1):5–12Google Scholar
  41. Feng B, Wu B, Zhang C et al (2012) Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa). J Pant Physiol 169(2):176–182Google Scholar
  42. Ferrante A, Hunter D, Hackett W et al (2002a) Thidiazuron—a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol Tecnol 25(3):333–338Google Scholar
  43. Ferrante A, Tognoni F, Mensuali-Sodi A (2002b) Treatment with thidiazuron for preventing leaf yellowing in cut tulips and chrysanthemum. In: XXVI international horticultural congress: elegant science in floriculture 624, pp 357–363Google Scholar
  44. Ferrante A, Vernieri P, Serra G et al (2004) Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul 43(2):127–134. https://doi.org/10.1023/B:GROW.0000040119.27627.b2 CrossRefGoogle Scholar
  45. Fiola J, Hassan M, Swartz H et al (1990) Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tissue Organ Cult 20(3):223–228. https://doi.org/10.1007/BF00041885 Google Scholar
  46. Franklin G, Sheeba C, Sita G (2004) Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cell Dev Biol-Plant 40(2):188–191. https://doi.org/10.1079/IVP2003491 CrossRefGoogle Scholar
  47. Fujimura T, Komamine A (1980) Mode of action of 2, 4-D and zeatin on somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 99(1):1–8CrossRefGoogle Scholar
  48. Gairi A, Rashid A (2004) Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J Plant Physiol 161(9):1073–1077PubMedCrossRefGoogle Scholar
  49. Ganeshan S, Chodaparambil S, Båga M et al (2006) In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tissue Organ Cult 85(1):63–73. https://doi.org/10.1007/s11240-005-9049-z CrossRefGoogle Scholar
  50. Gill R, Saxena PK (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea): promotive role of thidiazuron. Can J Bot 70(6):1186–1192CrossRefGoogle Scholar
  51. Gill R, Saxena PK (1993) Somatic embryogenesis in Nicotiana tabacum L.: induction by thidiazuron of direct embryo differentiation from cultured leaf discs. Plant Cell Rep 12(3):154–159. https://doi.org/10.1007/BF00239097
  52. Graner É, Oberschelp G, Brondani G et al (2013) TDZ pulsing evaluation on the in vitro morphogenesis of peach palm. Physiol Mol Biol Plant 19(2):283–288. https://doi.org/10.1007/s12298-012-0160-4 CrossRefGoogle Scholar
  53. Gubbuk H, Pekmezci M (2006) In vitro propagation of banana (Musa spp.) using thidiazuron and activated charcoal. Acta Agric Scand Sect B-Soil Plant Sci 56(1):65–69Google Scholar
  54. Guo B, Abbasi B, Zeb A et al (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(45):8984–9000CrossRefGoogle Scholar
  55. Guo B, Stiles A, Liu C (2012) Thidiazuron enhances shoot organogenesis from leaf explants of Saussurea involucrata Kar. et Kir. In Vitro Cell Dev Biol-Plant 48(6):609–612. https://doi.org/10.1007/s11627-012-9468-6 CrossRefGoogle Scholar
  56. Gupta D, Bhargava S (2001) Thidiazuron induced regeneration in Cuminum cyminum L. J Plant Biochem Biotechnol 10(1):61–62. https://doi.org/10.1007/BF03263109 CrossRefGoogle Scholar
  57. Gupta S, Conger B (1998) In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell Dev Biol-Plant 34(3):196–202. https://doi.org/10.1007/BF02822708 CrossRefGoogle Scholar
  58. Hare P, Cress W (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21(2):79–102. https://doi.org/10.1023/A:1005703923347 CrossRefGoogle Scholar
  59. Hare P, Van Staden J (1994) Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol 35(8):1121–1125CrossRefGoogle Scholar
  60. Hosokawa K, Nakano M, Oikawa Y et al (1996) Adventitious shoot regeneration from leaf, stem and root explants of commercial cultivars of Gentiana. Plant Cell Rep 15(8):578–581. https://doi.org/10.1007/BF00232456
  61. Hosseini-Nasr M, Rashid A (2002) Thidiazuron-induced shoot-bud formation on root segments of Albizia julibrissin is an apex-controlled, light-independent and calcium-mediated response. Plant Growth Regul 36(1):81–85. https://doi.org/10.1023/A:1014771130101 CrossRefGoogle Scholar
  62. Huetteman C, Preece J (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33(2):105–119. https://doi.org/10.1007/BF01983223 CrossRefGoogle Scholar
  63. Husain M, Anis M, Shahzad A (2007) In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using thidiazuron. In Vitro Cell Dev Biol-Plant 43(1):59–64CrossRefGoogle Scholar
  64. Husaini A, Abdin M (2007) Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria x ananassa Duch. In Vitro Cell Dev Biol-Plant 43(6):576–584. https://doi.org/10.1007/s11627-007-9048-3 CrossRefGoogle Scholar
  65. Hussain TM, Chandrasekhar T, Gopal GR (2008) Micropropagation of Sterculia urens Roxb., an endangered tree species from intact seedlings. Afr J Biotechnol 7(2):95–101Google Scholar
  66. Hutchinson M, Saxena PK (1996) Role of purine metabolism in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium× hortorum) hypocotyl cultures. Physiol Plant 98(3):517–522. https://doi.org/10.1111/j.1399-3054.1996.tb05706.x CrossRefGoogle Scholar
  67. Hutchinson M, Murch S, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium× hortorum Bailey). J Plant Physiol 149(5):573–579CrossRefGoogle Scholar
  68. Hutchinson M, Murr D, Krishnaraj S et al (1997) Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium× hortorum bailey) hypocotyl cultures. In Vitro Cell Dev Biol-Plant 33(2):136–141. https://doi.org/10.1007/s11627-997-0012-z CrossRefGoogle Scholar
  69. Hyde C, Phillips G (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol-Plant 32(2):72–80. https://doi.org/10.1007/BF02823134 CrossRefGoogle Scholar
  70. Iantcheva A, Vlahova M, Bakalova E et al (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18(11):904–910. https://doi.org/10.1007/s002990050682 CrossRefGoogle Scholar
  71. Jahan A, Anis M, Aref I (2011) Preconditioning of axillary buds in thidiazuron-supplemented liquid media improves in vitro shoot multiplication in Nyctanthes arbor-tristis L. Appl Biochem Biotechnol 163(7):851–859. https://doi.org/10.1007/s12010-010-9089-7
  72. Jain P, Rashid A (2001) Stimulation of shoot regeneration on Linum hypocotyl segments by thidiazuron and its response to light and calcium. Biol Plant 44(4):611–613. https://doi.org/10.1023/A:1013767426219 CrossRefGoogle Scholar
  73. Jiang B, Yang Y, Guo Y et al (2005) Thidiazuron-induced in vitro shoot organogenesis of the medicinal plant Arnebia euchroma (Royle) Johnst. In Vitro Cell Deve Biol-Plant 41(5):677–681CrossRefGoogle Scholar
  74. Jiang C, Wu L, Macnish A et al (2008) Thidiazuron, a non-metabolized cytokinin, shows promise in extending the life of potted plants. In: IX international symposium on postharvest quality of ornamental plants 847, p 59–66Google Scholar
  75. Jones M, Yi Z, Murch S et al (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26(1):13–19. https://doi.org/10.1007/s00299-006-0209-3 PubMedCrossRefGoogle Scholar
  76. Jones M, Shukla M, Biswas G et al (2015) Protoplast-to-plant regeneration of American elm (Ulmus americana). Protoplasma 252:925–931PubMedCrossRefGoogle Scholar
  77. Kanyand M, Dessai A, Prakash C (1994) Thidiazuron promotes high frequency regeneration of peanut (Arachis hypogaea) plants in vitro. Plant Cell Rep 14(1):1–5. https://doi.org/10.1007/BF00233288 PubMedCrossRefGoogle Scholar
  78. Kartomysheva O, Volkova T, Nikitenko S (1983) Dropp, a new promising stimulant of callus formation. Sintez, Biologicheskaya Aktivnost’i Primenenie Pestitsidov:131–135Google Scholar
  79. Kefford N, Zwar A, Bruce M (1968) Antagonism of purine and urea cytokinin activities by derivatives of benzylurea. Biochemistry and physiology of plant growth substances. Runge Press, Ottawa, pp 61–69Google Scholar
  80. Khan H, Siddique I, Anis M (2006) Thidiazuron induced somatic embryogenesis and plant regeneration in Capsicum annuum. Biol Plant 50(4):789–792. https://doi.org/10.1007/s10535-006-0133-y CrossRefGoogle Scholar
  81. Khurana-Kaul V, Kachhwaha S, Kothari S (2010) Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol Plant 54(2):369–372. https://doi.org/10.1007/s10535-010-0066-3 CrossRefGoogle Scholar
  82. Kidwai N, Jain M, Chaturvedi H (2009) Role of thidiazuron in in vitro induction of embryogenesis in nucellar tissue of Mangifera indica L. var. Dashehari, leading to plantlets. Curr Sci 96:1119–1124Google Scholar
  83. Kumar N, Reddy M (2012) Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: a candidate biodiesel plant. Ind Crop Prod 39:62–68CrossRefGoogle Scholar
  84. Lakshmi S, Benjamin J, Kumar T et al (2010) In vitro propagation of Hoya wightii ssp. palniensis KT Mathew, a highly vulnerable and endemic species of Western Ghats of Tamil Nadu, India. Afr J Biotechnol 9(5):620–627CrossRefGoogle Scholar
  85. Lata H, Chandra S, Khan I et al (2009) Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell Dev Biol-Plant 45(1):12–19. https://doi.org/10.1007/s11627-008-9167-5 CrossRefGoogle Scholar
  86. Lazzeri P, Dunwell J (1984) Establishment of isolated root cultures of Brassica species and regeneration from cultured-root segments of Brassica oleracea var (ed). italica. Ann Bot 54(3):351–361CrossRefGoogle Scholar
  87. Leblay C, Chevreau E, Raboin L (1991) Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L.) Plant Cell Tissue Organ Cult 25(2):99–105. https://doi.org/10.1007/BF00042180 Google Scholar
  88. Ledbetter D, Preece J (2004) Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia leaf explants. Sci Hortic 101:121–126CrossRefGoogle Scholar
  89. Li H, Murch S, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell Tissue Organ Cult 62(3):169–173. https://doi.org/10.1023/A:1006491408762 CrossRefGoogle Scholar
  90. Li J, Wu Y, Wang T et al (2009) In vitro direct organogenesis and regeneration of Medicago sativa. Biol Plant 53(2):325–328. https://doi.org/10.1007/s10535-009-0059-2
  91. Lin C, Wang R, Jauh G (1988) Enhancement of callus formation on grape single bud cuttings by thidiazuron. In: VI international symposium on growth regulators in fruit production 239, pp 129–132Google Scholar
  92. Lin C, Lin C, Chang W (2004) Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76(1):75–82. https://doi.org/10.1023/A:1025848016557 CrossRefGoogle Scholar
  93. Lincy A, Sasikumar B (2010) Enhanced adventitious shoot regeneration from aerial stem explants of ginger using TDZ and its histological studies. Tur J Bot 34(1):21–29Google Scholar
  94. Liu Q, Salih S, Hammerschlag F (1998) Etiolation of Royal Gala’apple (Malus× domestica Borkh.) shoots promotes high-frequency shoot organogenesis and enhanced,-glucuronidase expression from stem internodes. Plant Cell Rep 18(1):32–36. https://doi.org/10.1007/s002990050527 CrossRefGoogle Scholar
  95. Liu C, Murch S, El-Demerdash M et al (2003) Regeneration of the Egyptian medicinal plant Artemisia judaica L. Plant Cell Rep 21(6):525–530. https://doi.org/10.1007/s00299-002-0561-x PubMedGoogle Scholar
  96. Lu C (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol-Plant 29(2):92–96. https://doi.org/10.1007/BF02632259 CrossRefGoogle Scholar
  97. Magioli C, Rocha A, De Oliveira D et al (1998) Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Rep 17(8):661–663. https://doi.org/10.1007/s002990050461 CrossRefGoogle Scholar
  98. Magyar-Tábori K, Dobránszki J, da Silva J et al (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult 101(3):251–267. https://doi.org/10.1007/s11240-010-9696-6 CrossRefGoogle Scholar
  99. Malabadi R, Mulgund G, Nataraja K et al (2004) Thidiazuron induced shoot regeneration of Costus speciosus (Koen.) Sm using thin rhizome sections. South Afr J Bot 70(2):255–258CrossRefGoogle Scholar
  100. Malik K, Saxena PK (1992) Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct shoot formation in intact seedlings by N 6-benzylaminopurine and thidiazuron. Planta 186(3):384–389. https://doi.org/10.1007/BF00195319 PubMedCrossRefGoogle Scholar
  101. Malik K, Ali-Khan S, Saxena PK (1993) High-frequency organogenesis from direct seed culture in Lathyrus. Ann Bot 72(6):629–637CrossRefGoogle Scholar
  102. Manjula R, Jholgiker P, Subbaiah K et al (2014) Morphological abnormality among hardened shoots of Banana cv. Rajapuri (AAB) after in vitro multiplication with TDZ and BAP from excised shoot tips. Int J Agric Env Biotechnol 7(3):465. https://doi.org/10.5958/2230-732X.2014.01350.3 CrossRefGoogle Scholar
  103. Martínez T, Corredoira E, Valladares S et al (2008) Germination and conversion of somatic embryos derived from mature Quercus robur trees: the effects of cold storage and thidiazuron. Plant Cell Tissue Organ Cult 95(3):341–351. https://doi.org/10.1007/s11240-008-9448-z CrossRefGoogle Scholar
  104. Matand K, Prakash C (2007) Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. J Biotechnol 130(2):202–207PubMedCrossRefGoogle Scholar
  105. Matsuta N, Hirabayashi T (1989) Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.) Plant Cell Rep 7(8):684–687PubMedGoogle Scholar
  106. Mehrotra S, Goel M, Srivastava V et al (2015) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37(2):253–263. https://doi.org/10.1007/s10529-014-1695-y PubMedCrossRefGoogle Scholar
  107. Mehta U, Barreto S, Hazra S (2004) Effect of thidiazuron in germinating tamarind seedlings. In Vitro Cell Dev Biol-Plant 40(3):279–283CrossRefGoogle Scholar
  108. de Melo FW, Kerbauy G, Kraus J et al (2006) Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J Plant Physiol 163(11):1126–1134Google Scholar
  109. Mihaljevic S, Vrsek I (2009) In vitro shoot regeneration from immature seeds of Epimedium alpinum induced by thidiazuron and CPPU. Sci Hortic 120:406–410CrossRefGoogle Scholar
  110. Mithila J, Hall J, Victor J et al (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.) Plant Cell Rep 21(5):408–414. https://doi.org/10.1007/s00299-002-0544-y PubMedCrossRefGoogle Scholar
  111. Mok M, Mok D (1985) The metabolism of [14C]-tMdiaziiroii in callus tissues of Phaseolus lunatus. Physiol Plant 65(4):427–432CrossRefGoogle Scholar
  112. Mok M, Mok D, Armstrong D et al (1982) Cytokinin activity of N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry 21(7):1509–1511CrossRefGoogle Scholar
  113. Mok M, Mok D, Turner J, Mujer C (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. Hort Sci 22(6):1194–1197Google Scholar
  114. Mok M, Martin R, Dobrev P et al (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137(3):1057–1066PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mondal TK, Bhattacharya A, Sood A et al (1998) Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron. Plant Growth Regul 26(1):57–61. https://doi.org/10.1023/A:1006019206264 CrossRefGoogle Scholar
  116. Montecelli S, Gentile A, Damiano C (1999) In vitro shoot regeneration of apple cultivar gala. In: International symposium on methods and markers for quality assurance in micropropagation. Acta Hortic 530:219–224Google Scholar
  117. Mundhara R, Rashid A (2002) Stimulation of shoot-bud regeneration on hypocotyl of Linum seedlings, on a transient withdrawal of calcium: effect of calcium, cytokinin and thidiazuron. Plant Sci 162(2):211–214CrossRefGoogle Scholar
  118. Mundhara R, Rashid A (2006) TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci 170(2):185–190CrossRefGoogle Scholar
  119. Murashige T (1974) Plant propagation through tissue cultures. Ann Rev Plant Physiol 25(1):135–166CrossRefGoogle Scholar
  120. Murch S, Saxena PK (1997) Modulation of mineral and fatty acid profiles during thidiazuron mediated somatic embryogenesis in peanuts (Arachis hypogaea L.) J Plant Physiol 151:358–361CrossRefGoogle Scholar
  121. Murch S, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium× hortorum Bailey. Plant Growth Regul 35(3):269–275. https://doi.org/10.1023/A:1014468905953 CrossRefGoogle Scholar
  122. Murch S, KrishnaRaj S, Saxena PK (1997) Thidiazuron-induced regeneration: a potential stress response. Plant Physiol 114(3):177–177Google Scholar
  123. Murch S, Victor J, Krishnaraj S et al (1999) The role of proline in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cell Dev Biol-Plant 35(1):102–105. https://doi.org/10.1007/s11627-999-0018-9 CrossRefGoogle Scholar
  124. Murch S, Choffe K, Victor J et al (2000) Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John’s wort (Hypericum perforatum. cv‘Anthos’). Plant Cell Rep 19(6):576–581. https://doi.org/10.1007/s002990050776 CrossRefGoogle Scholar
  125. Murch S, Victor J, Saxena PK (2002) Auxin, calcium and sodium in somatic embryogenesis of African violet (Saintpaulia ionantha Wendl. Cv. Benjamin). In: XXVI international horticultural congress: biotechnology in horticultural crop improvement: achievements, opportunities and 625, pp 201–209Google Scholar
  126. Murthy BNS, Saxena PK (1994) Somatic embryogenesis in peanut (Arachis hypogaea L.): stimulation of direct differentiation of somatic embryos by forchlorfenuron (CPPU). Plant Cell Rep 14(2–3):145–150Google Scholar
  127. Murthy B, Murch S, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94(2):268–276CrossRefGoogle Scholar
  128. Murthy B, Victor J, Singh R et al (1996) In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regul 19(3):233–240. https://doi.org/10.1007/BF00037796 CrossRefGoogle Scholar
  129. Murthy B, Murch S, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol-Plant 34(4):267. https://doi.org/10.1007/BF02822732 CrossRefGoogle Scholar
  130. Nhut DT, Hanh N, Tuan P et al (2006) Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum. Sci Hortic 110(1):93–97CrossRefGoogle Scholar
  131. Nikolić R, Mitić N, Miletić R et al (2006) Effects of cytokinins on in vitro seed germination and early seedling morphogenesis in Lotus corniculatus L. J Plant Growth Regul 25(3):187–194. https://doi.org/10.1007/s00344-005-0129-4 CrossRefGoogle Scholar
  132. Olah R, Szegedi E, Ruthner S, Korbuly J (2003) Thidiazuron-induced regeneration and genetic transformation of grapevine rootstock varieties. Vitis 42(4):207–207Google Scholar
  133. Oluk E, Orhan S (2009) Thidiazuron induced micropropagation of Hypericum triquetrifolium Turra. Afr J Biotechnol 8(15):3506–3510Google Scholar
  134. Osman M, Elhadi E, Khalafalla M (2010) Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill, CV Omdurman) induced by thidiazuron. Afr J Biotechnol 9(28):4407–4413Google Scholar
  135. Park S, Murthy H, Paek K (2003) Protocorm-like body induction and subsequent plant regeneration from root tip cultures of Doritaenops. Plant Sci 164(6):919–923Google Scholar
  136. Parveen S, Shahzad A (2011) A micropropagation protocol for Cassia angustifolia Vahl. from root explants. Acta Physiol Plant 33(3):789–796. https://doi.org/10.1007/s11738-010-0603-x CrossRefGoogle Scholar
  137. Passey A, Barrett K, James D (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria× ananassa Duch.) using a range of explant types. Plant Cell Rep 21(5):397–401. https://doi.org/10.1007/s00299-002-0530-4 PubMedCrossRefGoogle Scholar
  138. Pavingerová D (2009) The influence of thidiazuron on shoot regeneration from leaf explants of fifteen cultivars of Rhododendron. Biol Plant 53(4):797–799. https://doi.org/10.1007/s10535-009-0147-3 CrossRefGoogle Scholar
  139. Pavlista A, Gall C (2011) Delaying early blight onset in potato with thidiazuron. Am J Potato Res 88(2):114–120. https://doi.org/10.1007/s12230-010-9168-x CrossRefGoogle Scholar
  140. Pawlicki-Jullian N, Sedira M, Welander M (2002) The use of Agrobacterium rhizogenes transformed roots to obtain transgenic shoots of the apple rootstock Jork 9. Plant Cell Tissue Organ Cult 70(2):163–171. https://doi.org/10.1023/A:1016387004712 CrossRefGoogle Scholar
  141. Pourebad N, Motafakkerazad R, Kosari-Nasab M et al (2015) The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell Tissue Organ Cult 122(2):331–339. https://doi.org/10.1007/s11240-015-0769-4 CrossRefGoogle Scholar
  142. Pradhan C, Kar S, Pattnaik S et al (1998) Propagation of Dalbergia sissoo Roxb. through in vitro shoot proliferation from cotyledonary nodes. Plant Cell Rep 18(1–2):122–126. https://doi.org/10.1007/s002990050543 CrossRefGoogle Scholar
  143. Prathanturarug S, Soonthornchareonnon N, Chuakul W et al (2005) Rapid micropropagation of Curcuma longa using bud explants pre-cultured in thidiazuron-supplemented liquid medium. Plant Cell Tissue Organ Cult 80(3):347–351. https://doi.org/10.1007/s11240-004-1020-x
  144. Preece J, Imel M (1991) Plant regeneration from leaf explants of Rhododendron ‘PJM Hybrids’. Sci Hortic 48(1–2):159–170CrossRefGoogle Scholar
  145. Proctor J, Slimmon T, Saxena PK (1996) Modulation of root growth and organogenesis in thidiazuron-treated ginseng (Panax quinquefolium L.) Plant Growth Regul 20(3):201–208. https://doi.org/10.1007/BF00043309 CrossRefGoogle Scholar
  146. Purohit S, Joshi P, Tak K et al (2004) Development of high efficiency micropropagation protocol of an adult tree—Wrightia tomentosa. Plant Biotechnol Mol Markers 3:217–227Google Scholar
  147. Rad F, Jafari M, Khezrinejad N et al (2014) An efficient plant regeneration system via direct organogenesis with in vitro flavonoid accumulation and analysis of genetic fidelity among regenerants of Teucrium polium L. Hort Env Biotechnol 55(6):568–577. https://doi.org/10.1007/s13580-014-0611-7 CrossRefGoogle Scholar
  148. Radhakrishnan R, Ramachandran A, Kumari BR (2009) Rooting and shooting: dual function of thidiazuron in in vitro regeneration of soybean (Glycine max L.) Acta Physiol Plant 31(6):1213–1217. https://doi.org/10.1007/s11738-009-0356-6 CrossRefGoogle Scholar
  149. Rolli E, Incerti M, Brunoni F et al (2012) Structure–activity relationships of N-phenyl-N′-benzothiazol-6-ylurea synthetic derivatives: cytokinin-like activity and adventitious rooting enhancement. Phytochemistry 74:159–165PubMedCrossRefGoogle Scholar
  150. Saito A, Suzuki M (1999) Plant regeneration from meristem-derived callus protoplasts of apple (Malus domestica cv.Fuji’). Plant Cell Rep 18(7):549–553. https://doi.org/10.1007/s002990050620 CrossRefGoogle Scholar
  151. San B, Li Z, Hu Q et al (2015) Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian® is significantly enhanced by silver thiosulfate. Plant Cell Tissue Organ Cult 120(2):757–765. https://doi.org/10.1007/s11240-014-0645-7 CrossRefGoogle Scholar
  152. Sanikhani M, Frello S, Serek M (2006) TDZ induces shoot regeneration in various Kalanchoe blossfeldiana Poelln. Cultivars in the absence of auxin. Plant Cell Tissue Organ Cult 85(1):75–82. https://doi.org/10.1007/s11240-005-9050-6 CrossRefGoogle Scholar
  153. Sankhla D, Davis T, Sankhla N (1994) Thidiazuron-induced in vitro shoot formation from roots of intact seedlings of Albizzia julibrissin. Plant Growth Regul 14(3):267–272. https://doi.org/10.1007/BF00024802 CrossRefGoogle Scholar
  154. Sankhla D, Davis T, Sankhla N (1996) In vitro regeneration of silktree (Albizzia julibrissin) from excised roots. Plant Cell Tissue Organ Cult 44(1):83–86. https://doi.org/10.1007/BF00045917 CrossRefGoogle Scholar
  155. Sankhla N, Mackay W, Davis T (2003) Effect of thidiazuron on senescence of flowers in cut inflorescences of Lupinus densiflorus Benth. In: VIII international symposium on postharvest physiology of ornamental plants 669, pp 239–244Google Scholar
  156. Saxena PK, Malik K, Gill R (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta 187(3):421–424. https://doi.org/10.1007/BF00195667 PubMedCrossRefGoogle Scholar
  157. Sharifi G, Ebrahimzadeh H, Ghareyazie B et al (2010) Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.) In Vitro Cell Dev Biol-Plant 46(3):274–280. https://doi.org/10.1007/s11627-009-9264-0 CrossRefGoogle Scholar
  158. Sharma RK, Barna K, Wakhlu A (2004) Effect of Thidiazuron on micropropagation of Malus pumila Mill. Cv. Ambri. Oriental Sci 9:31–36Google Scholar
  159. Sharma V, Gupta S, Dhiman M (2013) Regeneration of plants from nodal and internodal segment cultures of Ephedra gerardiana using thidiazuron. Plant Tiss Cult Biotechnol 22(2):53–161Google Scholar
  160. Shukla M, Sullivan A, Jain S et al (2013) Micropropagation of African violet (Saintpaulia ionantha Wendl.) In: Maurizio L et al (eds) Protocols for micropropagation of selected economically-important horticultural plants, methods in molecular biology, vol 994. Springer, New York, pp 279–288. https://doi.org/10.1007/978-1-62703-074-8_22 CrossRefGoogle Scholar
  161. Singh. P., Dwivedi, P. (2014). Two-stage culture procedure using thidiazuron for efficient micropropagation of Stevia rebaudiana, an anti-diabetic medicinal herb. 3 Biotechnology 4(4), 431–437Google Scholar
  162. Singh N, Sahoo L, Sarin N et al (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Sci 164(3):341–347CrossRefGoogle Scholar
  163. Soliman H (2013) In vitro regeneration and genetic transformation of peach (Prunus Persica L.) plants. Life Sci J 10(2):487–496Google Scholar
  164. Stern R, Shargal A, Flaishman M (2003) Thidiazuron increases fruit size of ‘Spadona’and ‘Coscia’pear (Pyrus communis L.) J Horticult Sci Biotechnol 78(1):51–55CrossRefGoogle Scholar
  165. Subotić A, Jevremović S, Grubišić D (2009) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea—valuable medicinal plant. Sci Hortic 120(3):386–390CrossRefGoogle Scholar
  166. Suezawa K, Matsuta N, Omura M et al (1988) Plantlet formation from cell suspensions of kiwifruit (Actinidia chinensis Planch. var. chinensis). Sci Hortic 37(2):123–128CrossRefGoogle Scholar
  167. Susan J (1996) Morphoregulatory role of thidiazuron: effect on metabolic process during regeneration. Dissertation, The University of GuelphGoogle Scholar
  168. Suttle J (1984) Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments. Plant Physiol 75(4):902–907PubMedPubMedCentralCrossRefGoogle Scholar
  169. Szász A, Nervo G, Fári M (1995) Screening for in vitro shoot-forming capacity of seedling explants in bell pepper (Capsicum annuum L.) genotypes and efficient plant regeneration using thidiazuron. Plant Cell Rep 14(10):666–669PubMedCrossRefGoogle Scholar
  170. Tang W, Newton R (2005) Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.) Plant Cell Rep 24(1):1–9. https://doi.org/10.1007/s00299-005-0914-3 PubMedCrossRefGoogle Scholar
  171. Thengane S, Kulkarni D, Shrikhande V et al (2001) Effect of thidiazuron on adventitious shoot regeneration from seedling explants of Nothapodytes foetida. In Vitro Cell Dev Biol-Plant 37(2):206–210. https://doi.org/10.1007/s11627-001-0036-8 CrossRefGoogle Scholar
  172. Thomas T (2003) Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biol Plant 46(4):529–533. https://doi.org/10.1023/A:1024807426591 CrossRefGoogle Scholar
  173. Thomas J, Katterman F (1986) Cytokinin activity induced by thidiazuron. Plant Physiol 81(2):681–683PubMedPubMedCentralCrossRefGoogle Scholar
  174. Thomas TD, Philip B (2005) Thidiazuron-induced high-frequency shoot organogenesis from leaf-derived callus of a medicinal climber, Tylophora indica (Burm. F.) Merrill. In Vitro Cell Dev Bio Plant 41(2):124–128CrossRefGoogle Scholar
  175. Thomas T, Puthur J (2004) Thidiazuron induced high frequency shoot organogenesis in callus from Kigelia pinnata L. Bot Bull Acad Sin 45:307–313Google Scholar
  176. Trewavas A (1999) Le calcium, c’est la vie: calcium makes waves. Plant Physiol 120(1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tsvetkov I (1999) Thidiazuron-induced somatic embryogenesis in common oak (Q. Robur L.) Biotechnol Equip 13(1):44–46Google Scholar
  178. Tsvetkov I, Husman J, Jouve L (2007) Thidiazuron-induced regeneration in root segments of white poplar (P. alba L.) Bulgarian J Agric Sci 13(5):623Google Scholar
  179. Twyford C, Mantell S (1996) Production of somatic embryos and plantlets from root cells of the Greater Yam. Plant Cell Tissue Organ Cult 46(1):17–26. https://doi.org/10.1007/BF00039692 CrossRefGoogle Scholar
  180. Uranbey S (2005) Thidiazuron induced adventitious shoot regeneration in Hyoscyamus niger. Biol Plant 49(3):427–430. https://doi.org/10.1007/s10535-005-0021-x CrossRefGoogle Scholar
  181. Uthairatanakij A, Jeenbuntug J, Buanong M, Kanlayanarat S (2007) Effect of Thidiazuron pulsing on physiological changes of cut tuberose flower (Polianthes tuberose L.). In: International conference on quality management in supply chains of ornamentals 755, pp 477–481Google Scholar
  182. Van Nieuwkerk J, Zimmerman R, Fordham I (1985) Response of apple cultivars in vitro to thidiazuron. Hort Sci 20:523Google Scholar
  183. Varshney A, Anis M (2012) Improvement of shoot morphogenesis in vitro and assessment of changes of the activity of antioxidant enzymes during acclimation of micropropagated plants of Desert Teak. Acta Physiol Plant 34(3):859–867. https://doi.org/10.1007/s11738-011-0883-9 CrossRefGoogle Scholar
  184. Victor J, Murthy B, Murch S et al (1999) Role of endogenous purine metabolism in thidiazuron-induced somatic embryogenesis of peanut (Arachis hypogaea L.) Plant Growth Regul 28(1):41–47. https://doi.org/10.1023/A:1006251531319 CrossRefGoogle Scholar
  185. Vila S, Gonzalez A, Rey H et al (2005) Plant regeneration, origin, and development of shoot buds from root segments of Melia azedarach L. (Meliaceae) seedlings. In Vitro Cell Dev Biol-Plant 41(6):746–751CrossRefGoogle Scholar
  186. Visser C, Qureshi J, Gill R et al (1992) Morphoregulatory role of thidiazuron substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99(4):1704–1707PubMedPubMedCentralCrossRefGoogle Scholar
  187. Vu N, Anh P, Nhut D (2006) The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv.“First Prize”. Plant Cell Tissue Organ Cult 87(3):315–320. https://doi.org/10.1007/s11240-006-9089-z CrossRefGoogle Scholar
  188. Wang S, Steffens G, Faust M (1986) Breaking bud dormancy in apple with a plant bioregulator, thidiazuron. Phytochemistry 25(2):311–317CrossRefGoogle Scholar
  189. Wang B, Peng D, Liu L et al (2007) An efficient adventitious shoot regeneration system for ramie (Boehmeria nivea Gaud) using thidiazuron. Bot Stud 48(2):173–180Google Scholar
  190. Wang Q, Zheng L, Yuan H et al (2013) Propagation of Salvia miltiorrhiza from hairy root explants via somatic embryogenesis and tanshinone content in obtained plants. Ind Crop Prod 50:648–653CrossRefGoogle Scholar
  191. White P, Broadley M (2003) Calcium in plants. Ann Bot 92(4):487–511PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yip W, Yang S (1986) Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80(2):515–519PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yousefiara M, Kermani M, Bagheri A et al (2014) Induction of direct adventitious shoot regeneration in pear (Pyrus communis L.) Plant Tiss Cult Biotechnol 24(1):87–92Google Scholar
  194. Zaytseva Y, Poluboyarova T, Novikova T (2016) Effects of thidiazuron on in vitro morphogenic response of Rhododendron sichotense Pojark and Rhododendron catawbiense cv. Grandiflorum leaf explants. In Vitro Cell Dev Biol-Plant 52(1):56–63. https://doi.org/10.1007/s11627-015-9737-2 CrossRefGoogle Scholar
  195. Zee S (1981) Studies on adventive embryo formation in the petiole expiants of coriander (Coriandrum sativum). Protoplasma 107(1):21–26. https://doi.org/10.1007/BF01275604 CrossRefGoogle Scholar
  196. Zhang CG, Li W, Mao YF et al (2005) Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ J Plant Physiol 52(3):345–351. https://doi.org/10.1007/s11183-005-0052-3 CrossRefGoogle Scholar
  197. Zhihui S, Tzitzikas M, Raemakers K et al (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol-Plant 45(6):776–782. https://doi.org/10.1007/s11627-009-9212-z CrossRefGoogle Scholar
  198. Zobayed S, Saxena PK (2003) In vitro-grown roots: a superior explants for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv. “New Stem”) in a temporary immersion bioreactor. Plant Sci 165:463–470Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Elham Tavakouli Dinani
    • 1
  • Mukund R. Shukla
    • 1
  • Christina E. Turi
    • 1
  • J. A. Sullivan
    • 1
  • Praveen K. Saxena
    • 1
  1. 1.Department of Plant Agriculture, Gosling Research Institute for Plant PreservationUniversity of GuelphGuelphCanada

Personalised recommendations