Skip to main content

DNA Barcoding of Copepods

  • Chapter
  • First Online:
Basic and Applied Zooplankton Biology

Abstract

Copepods are the most studied zooplankton focussing on diversity, morphology, taxonomy, phylogeny, distribution, life-cycle strategies, feeding behaviour and adaptation to various environmental conditions (Bradford-Grieve et al. 2010; Blanco-Bercial et al. 2011; Saiz and Calbet 2011). They are the most diverse taxon which extend over vast geographic ranges and are planktonic almost throughout their life cycle. Precise identification is based on our knowledge of morphological traits found among copepods. The common occurrence of spectacular ontogenetic changes and also higher levels of morphological plasticity persisted among copepods have remained a challenge for the species identification that can be readily addressed through the molecular level (McManus and Katz 2009). More recently, biodiversity assessments have been increasingly concentrated on molecular-based genetic methods (Bucklin et al. 2010a; Grant et al. 2011). The molecular taxonomical analysis has heralded a new era in solving the confusion caused by cryptic species (Goetze 2003, 2010; Miyamoto et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashton, G.V., M.I. Stevens, M.C. Hart, D.H. Green, M.T. Burrows, E.J. Cook, and K.J. Willis. 2008. Mitochondrial DNA reveals multiple northern hemisphere introductions of Caprella mutica (Crustacea, Amphipoda). Molecular Ecology 17: 1293–1303.

    Article  CAS  Google Scholar 

  • Avise, J.C. 2009. Phylogeography: Retrospect and prospect. Journal of Biogeography 36: 3–15.

    Article  Google Scholar 

  • Blanco-Bercial, L., and F. Alvarez-Marques. 2007. RFLP procedure to discriminate between Clausocalanus Giesbrecht, 1888 (Copepoda, Calanoida) species in the Central Cantabrian Sea. Journal of Experimental Marine Biology and Ecology 344: 73–77.

    Article  CAS  Google Scholar 

  • Blanco-Bercial, L., J. Bradford-Grieve, and A. Bucklin. 2011. Molecular phylogeny of the Calanoida (Crustacea: Copepoda). Molecular Phylogenetics and Evolution 59: 103–113.

    Article  Google Scholar 

  • Bottger-Schnack, R., and R.J. Machida. 2010. Comparison of morphological and molecular traits for species identification and taxonomic grouping of oncaeid copepods. Hydrobiologia 666: 111–125.

    Article  Google Scholar 

  • Bradford-Grieve, J.M., G.A. Boxshall, S.T. Ahyong, and S. Ohtsuka. 2010. Cladistic analysis of the calanoid copepoda. Invertebrate Systematics 24: 291–321.

    Article  Google Scholar 

  • Braga, E., R. Zardoya, A. Meyer, and J. Yen. 1999. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Marine Biology 133: 79–90.

    Article  CAS  Google Scholar 

  • Brown, W.M. 1985. The mitochondrial genome of animals. In Molecular evolutionary genetics, ed. R.J. Mclntyre, 95–130. New York: Plenum Press.

    Chapter  Google Scholar 

  • Bucklin, A. 2000. Methods for population genetic analysis of zooplankton, Chapter 11. In The zooplankton methodology manual, ed. R. Harris, P. Wiebe, J. Lenz, H.R. Skjoldal, and M. Huntley, 533–570. London: Academic.

    Chapter  Google Scholar 

  • Bucklin, A., and B.W. Frost. 2009. Morphological and molecular phylogenetic analysis of evolutionary lineages within Clausocalanus (Copepoda: Calanoida). Journal of Crustacean Biology 29: 111–120.

    Article  Google Scholar 

  • Bucklin, A., B.W. Frost, and T.D. Kocher. 1995. Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Marine Biology 121: 655–664.

    Article  CAS  Google Scholar 

  • Bucklin, A., C.C. Caudill, and A.M. Bentley. 1998. Population genetics and phylogeny of marine planktonic copepods. In Molecular approaches to the study of the ocean, ed. K.C. Cooksey, 303–318. London: Chapman Hall.

    Chapter  Google Scholar 

  • Bucklin, A., M. Guarnieri, R.S. Hill, A.M. Bentley, and S. Kaartvedt. 1999. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401: 239–254.

    Article  CAS  Google Scholar 

  • Bucklin, A., B.W. Frost, J. Bradford-Grieve, L. Allen, and N. Copley. 2003. Molecular systematics and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Marine Biology 142: 333–343.

    Article  CAS  Google Scholar 

  • Bucklin, A., R.R. Hopcroft, K.N. Kosobokova, L.M. Nigro, B.D. Ortman, R.M.J. Jennings, and C.J. Sweetman. 2010a. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep-Sea Research Part II 57: 40–48.

    Article  CAS  Google Scholar 

  • Bucklin, A., B.D. Ortman, R.M. Jennings, L.M. Nigro, C.J. Sweetman, N.J. Copley, T. Sutton, and P.H. Wiebe. 2010b. A Rosetta Stone for metazoan zooplankton: DNA barcode analysis of species diversity in the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Research Part II 57: 2234–2247.

    Article  CAS  Google Scholar 

  • Burton, R.S. 1996. Molecular tools in marine ecology. Journal of Experimental Marine Biology and Ecology 200: 85–101.

    Article  CAS  Google Scholar 

  • Burton, R.S., R.J. Byrne, and P.D. Rawson. 2007. Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene 403: 53–59.

    Article  CAS  Google Scholar 

  • Cepeda, G.D., L. Blanco-Bercial, A. Bucklin, C.M. Beron, and M.D. Vinas. 2012. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: Comparative analysis using 28S Rdna. PLoS One 7: e35861.

    Article  CAS  Google Scholar 

  • Colgan, D.J., A. McLauchlan, G.D.F. Wilson, S.P. Livingston, G.D. Edgecombe, J. Macaranas, G. Cassis, and M.R. Gray. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46: 419–437.

    Article  Google Scholar 

  • Engelmann, J.C., S. Rahmann, M. Wolf, J. Schultz, E. Fritzilas, S. Kneitz, T. Dandekar, and T. Müller. 2009. Modelling cross-hybridization on phylogenetic DNA microarrays increases the detection power of closely related species. Molecular Ecology Resources 9: 83–93.

    Article  CAS  Google Scholar 

  • Figueroa, D.F. 2011. Phylogenetic analysis of Ridgewayia (Copepoda: Calanoida) from the Galapagos and of a new species from the Florida Keys with a reevaluation of the phylogeny of Calanoida. Journal of Crustacean Biology 31: 153–165.

    Article  Google Scholar 

  • Folmer, O.M., W. Black, R. Hoen, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  Google Scholar 

  • Fuentes-Reines, J.M., and E. Suarez-Morales. 2014. A new subspecies of Nitokra affinis Gurney, 1927 (Copepoda, Harpacticoida) from the Caribbean coast of Colombia. ZooKeys 378: 1–15.

    Article  Google Scholar 

  • Geller, J., C. Meyer, M. Parker, and H. Hawk. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13: 851–861.

    Article  CAS  Google Scholar 

  • Goetze, E. 2003. Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proceedings of the Royal Society of London – Series B: Biological Sciences 270: 2321–2331.

    Article  Google Scholar 

  • ———. 2005. Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59: 2378–2398.

    CAS  Google Scholar 

  • ———. 2010. Species discovery in marine planktonic invertebrates through global molecular screening. Molecular Ecology 19: 952–967.

    Article  Google Scholar 

  • ———. 2011. Population differentiation in the Open Sea: Insights from the pelagic copepod Pleuromamma xiphias. Integrative and Comparative Biology 51: 580–597.

    Article  Google Scholar 

  • Goetze, E., and J. Bradford-Grieve. 2005. Genetic and morphological description of Eucalanus spinifer T. Scott, 1894 (Calanoida: Eucalanidae), a circumglobal sister pecies of the copepod E. hyalinus S.S. (Claus, 1866). Progress in Oceanography 65: 55–87.

    Article  Google Scholar 

  • Grant, R.A., H.J. Griffiths, D. Steinke, V. Wadley, and K. Linse. 2011. Antarctic DNA barcoding; a drop in the ocean? Polar Biology 34: 775–780.

    Article  Google Scholar 

  • Halanych, K.M., J.D. Bacheller, A.M.A. Aguinaldo, S.M. Liva, D.M. Hillis, and J.A. Lake. 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643.

    Article  CAS  Google Scholar 

  • Halanych, K.M., R.A. Lutz, and R.C. Vrijenhoek. 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cahiers de Biologie Marine 39: 355–358.

    Google Scholar 

  • Hassanin, A. 2006. Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution 38: 100–116.

    Article  CAS  Google Scholar 

  • Hassouna, N., B. Michot, and J.P. Bachelleire. 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research 12: 3563–3583.

    Article  CAS  Google Scholar 

  • Hebert, P.D.N., A. Cywinska, S.L. Ball, and J.R. deWaard. 2003a. Biological identifications through DNA barcodes. Proceedings of the Biological Sciences 270: 313–322.

    Article  CAS  Google Scholar 

  • Hebert, P.D.N., S. Ratnasingham, and J.R. deWaard. 2003b. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings- Royal Society of London [Biol] 270: S96–S99.

    Article  CAS  Google Scholar 

  • Hebert, P.D.N., E.H. Penton, J.M. Burns, D.H. Janzen, and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812–14817.

    Article  CAS  Google Scholar 

  • Hill, R.S., L.D. Allen, and A. Bucklin. 2001. Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species. Marine Biology 139: 279–287.

    Article  CAS  Google Scholar 

  • Hillis, D.M., and M.T. Dixon. 1991. Ribosomal DNA: Molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66: 411–453.

    Article  CAS  Google Scholar 

  • Ki, J., K. Lee, H.G. Park, S. Chullasorn, H. Dahms, and J. Lee. 2009. Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim. Journal of Plankton Research 31: 209–221.

    Article  CAS  Google Scholar 

  • Laakmann, S., G. Gerdts, R. Erler, T. Knebelsberger, P. Martinez Arbizu, and M.J. Raupach. 2013. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Molecular Ecology Resources 13: 862–876.

    Article  CAS  Google Scholar 

  • Landis, F.C., and A. Gargas. 2007. Using ITS2 secondary structure to create species-specific oligonucleotide probes for fungi. Mycologia 99: 681–692.

    Article  CAS  Google Scholar 

  • Lee, C.E. 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54: 2014–2027.

    Article  CAS  Google Scholar 

  • Machida, R.J., and A. Tsuda. 2010. Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences. PLoS One 5: e10278.

    Article  CAS  Google Scholar 

  • Machida, R.J., M.U. Miya, M. Nishida, and S. Nishida. 2002. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Marine Biotechnology 4: 406–417.

    Article  CAS  Google Scholar 

  • ———. 2004. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332: 71–78.

    Article  CAS  Google Scholar 

  • Mackie, J., M. Keough, and L. Christidis. 2006. Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata. Marine Biology 149: 285–295.

    Article  CAS  Google Scholar 

  • McManus, G.B., and L.A. Katz. 2009. Molecular and morphological methods for identifying plankton: What makes a successful marriage? Journal of Plankton Research 31: 1119–1129.

    Article  CAS  Google Scholar 

  • Merrit, T.J.S., L. Shi, M.C. Chase, M.A. Rex, and R.J. Etter. 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology and Biotechnology 7: 7–11.

    Google Scholar 

  • Miyamoto, H., R.J. Machida, and S. Nishida. 2010. Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep-Sea Research Part II 57: 2211–2219.

    Article  CAS  Google Scholar 

  • Nuwer, M., B. Frost, and E.V. Armbrust. 2008. Population structure of the planktonic copepod Calanus pacificus in the North Pacific Ocean. Marine Biology 156: 107–115.

    Article  Google Scholar 

  • Ortman, B.D. 2008. DNA Barcoding the Medusozoa and Ctenophora. Disseration, University of Connecticut, Storrs, 121pp.

    Google Scholar 

  • Palumbi, S.R. 1996. Nucleic acids II. The polymerase chain re- action. In Molecular systematics, ed. D.M. Hillis, C. Moritz, and B.K. Mable, 2nd ed., 205–247. Sunderland: Sinauer Associates.

    Google Scholar 

  • Papadopoulos, L.N., K.T.C.A. Peijnenburg, and P.C. Luttikhuizen. 2005. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Marine Biology 147: 1353–1365.

    Article  Google Scholar 

  • Park, J.K., B.L. Choe, and K.S. Eom. 2004. Two mitochondrial lineages in Korean freshwater Corbicula (Corbiculidae: Bivalvia). Molecules and Cells 17: 410–414.

    CAS  Google Scholar 

  • Place, A.R., X.J. Feng, C.R. Steven, H.M. Fourcade, and J.L. Boore. 2005. Genetic markers in blue crabs (Callinectes sapidus) II. Complete mitochondrial genome sequence and characterization of genetic variation. Journal of Experimental Marine Biology and Ecology 319: 15–27.

    Article  CAS  Google Scholar 

  • Rajthilak, C., P. Santhanam, M. Raja, T. Suman, S. Rajasree, R. Ramkumar, and P. Perumal. 2015. First distributional record of Nitokra affinis Gurney, 1927 (Copepoda: Harpacticoida: Ameiridae) from Vellar estuary (south-east India): Structural and molecular evidence. Marine Biodiversity Records 8: 1–9.

    Article  Google Scholar 

  • Raupach, M.J., C. Mayer, M. Malyutina, and J.W. Wegele. 2009. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society of London – Series B: Biological Sciences 276: 799–808.

    Article  CAS  Google Scholar 

  • Rocha-Olivares, A., J.W. Fleeger, and W. Foltz. 2001. Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Molecular Biology and Evolution 18: 1088–1102.

    Article  CAS  Google Scholar 

  • Saiz, E., and A. Calbet. 2011. Copepod feeding in the ocean: Scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666: 181–196.

    Article  CAS  Google Scholar 

  • Schizas, N.V., G.T. Street, B.C. Coull, G.T. Chandler, and J.M. Quattro. 1999. Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Marine Biology 135: 399–405.

    Article  CAS  Google Scholar 

  • Schizas, N.V., B.C. Coull, G.T. Chandler, and J.M. Quattro. 2002. Sympatry of distinct mitochondrial DNA lineages in a copepod inhabiting estuarine creeks in the southeastern USA. Marine Biology 140: 585–594.

    Article  CAS  Google Scholar 

  • Selkoe, K.A., C.M. Henzler, and S.D. Gaines. 2008. Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9: 363–377.

    Article  Google Scholar 

  • Shao, R., and S.C. Barker. 2007. Mitochondrial genomes of parasitic arthropods: Implications for studies of population genetics and evolution. Parasitology 134: 153–167.

    Article  CAS  Google Scholar 

  • Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Annals of the Entomological Society of America 87: 651–701.

    Article  CAS  Google Scholar 

  • Simon, C., T.R. Buckley, F. Frati, J.B. Stewart, and A.T. Beckenbach. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 37: 545–579.

    Article  Google Scholar 

  • Smith, P.J., D. Steinke, M.S. McVeagh, A.L. Stewart, C.D. Struthers, and C.D. Roberts. 2008. Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. Journal of Fish Biology 73: 1170–1182.

    Article  CAS  Google Scholar 

  • Soh, Y., S.W. Kwon, W. Lee, and Y.H. Yoon. 2012. A new Pseudodiaptomus (Copepoda, Calanoida) from Korea supported by molecular data. Zootaxa 3368: 229–244.

    Google Scholar 

  • Sonnenberg, R., A.W. Nolte, and D. Tautz. 2007. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Frontiers in Zoology 4: 6.

    Article  CAS  Google Scholar 

  • Spears, T., L.G. Abele, and W. Kim. 1992. The monophyly of brachyuran crabs: A phylogenetic study based on 18S rRNA. Systematic Biology 41: 446–461.

    Article  Google Scholar 

  • Staton, J.L., L.C. Wickliffe, L. Garlitska, S.M. Villanueva, and B.C. Coull. 2005. Genetic isolation discovered among previously described sympatric morphs of a meiobenthic copepod. Journal of Crustacean Biology 25: 551–557.

    Article  Google Scholar 

  • Steinke, D., T.S. Zemlak, and P.D.N. Hebert. 2009. Barcoding nemo: DNA-based identifications for the ornamental fish trade. PLoS One 4: e6300.

    Article  CAS  Google Scholar 

  • Takenaka, Y., A. Yamaguchi, N. Tsuruoka, M. Torimura, T. Gojobori, and Y. Shigeri. 2012. Evolution of bioluminescence in marine planktonic copepods. Molecular Biology and Evolution 29: 1669–1681.

    Article  CAS  Google Scholar 

  • Tautz, D., P. Arctander, A. Minelli, R.H. Thomas, and A.P. Vogler. 2003. A plea for DNA taxonomy. Trends in Ecology & Evolution 18: 70–74.

    Article  Google Scholar 

  • Thum, R.A. 2004. Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: An example with the North American genera. Hydrobiologia 519: 135–141.

    Article  CAS  Google Scholar 

  • Thum, R.A., and R.G. Harrison. 2009. Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciation. Biological Journal of the Linnean Society 96: 150–165.

    Article  Google Scholar 

  • White, T.J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, ed. M.A. Innis, D.H. Gelfand, and J.J. Sninsky, 315–322. New York: Academic Press.

    Google Scholar 

  • Wolstenholme, D.R. 1992. Animal mitochondrial-DNA – Structure and evolution. International Review of Cytology 141: 173–216.

    Article  CAS  Google Scholar 

  • Wyngaard, G.A., M. Hołynska, and J.A. Schulte. 2010. Phylogeny of the freshwater copepod Mesocyclops (Crustacea: Cyclopidae) based on combined molecular and morphological data, with notes on biogeography. Molecular Phylogenetics and Evolution 55: 753–764.

    Article  Google Scholar 

  • Zardoya, R., E. Costas, V. Lopez-Rodas, A. Garrido-Pertierra, and J.M. Bautista. 1995. Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. Journal of Molecular Evolution 41: 637–645.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are indebted to authorities of Alagappa University, Karaikudi, and Bharathidasan University, Tiruchirapalli, for facilities provided. One of the authors (CR) acknowledges the Science and Engineering Research Board (SERB), Govt. of India, New Delhi, for the financial support through National Post-Doctoral Fellowship (file number: PDF/2015/000407).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajthilak, C., Santhanam, P., Pachiappan, P., Veeramani, T., Ravikumar, S. (2019). DNA Barcoding of Copepods. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Zooplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7953-5_3

Download citation

Publish with us

Policies and ethics