Skip to main content

Isolation, Culture, and Application of Marine Microalga Dunaliella salina (Volvocales, Chlorophyceae) as an Aqua Feed Additive

  • Chapter
  • First Online:
  • 1023 Accesses

Abstract

Microalgae are microscopic unicellular organisms capable to convert solar energy to chemical energy via photosynthesis. They contain numerous bioactive compounds that can be harnessed for commercial use. The potential of microalgal photosynthesis for the production of valuable compounds or for energetic use is widely recognized due to their more efficient utilization of sunlight energy as compared with higher plants. Microalgae can be used to produce a wide range of metabolites such as proteins, lipids, carbohydrates, carotenoids, or vitamins for health, food and feed additives, cosmetics, and energy production (Adams et al. 2009). However, microalgal biotechnology only really began to develop in the middle of the last century. Nowadays, there are numerous commercial applications of microalgae such as microalgae can be used to enhance the nutritional value of food and animal feed owing to their chemical composition; they play a crucial role in aquaculture. Moreover, they are cultivated as a source of highly valuable molecules. For example, polyunsaturated fatty acid oils are added to infant formulas and nutritional supplements, and pigments are important as aqua feed additive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Baky, Hanaa H., Farouk K. El Baz, and Gamal S. El-Baroty. 2004. Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology 3 (1): 102–108.

    Article  Google Scholar 

  • Abe, H., and S. Ohmama. 1987. Effect of starvation, and seawater acclimation on the concentration and free L-histidine and related dipeptides in the muscle of eel, rainbow trout and Japanese dace. Comparative Biochemistry and Physiology 88: 507–511.

    Article  Google Scholar 

  • Adams, J.M., J.A. Gallagher, and I.S. Donnison. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology 21: 569–574.

    Article  CAS  Google Scholar 

  • Amaya, Elkin A., D. Allen Davis, and David B. Rouse. 2007a. Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture 262 (2–4): 393–401.

    Article  CAS  Google Scholar 

  • ———. 2007b. Alternative diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture 262: 419–425.

    Article  Google Scholar 

  • AOAC. 1995. Official Methods of Analysis. 16th ed. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Avron, M., and A. Ben-Amotz. 1992. Dunaliella: Physiology, Biochemistry and Biotechnology, 240. Boca Raton: CRC Press.

    Google Scholar 

  • Bai, S.C. 2001. Requirements of L-ascorbic acid in a viviparous marine teleost, Korean rockfish, Sebastes schlegeli (Hilgendorf). In Ascorbic Acid in Aquatic Organisms, ed. K. Dabrowski, 69–85. Boca Raton: CRC Press.

    Google Scholar 

  • Bhavan, P.S., S. Radhakrishnan, and C. Seenivasan. 2011. Growth performance of the monsoon river prawn Macrobrachium malcolmsonii on formulated feeds with combinations of pulses and cereals along with groundnut oilcake and soya meal. Journal of Ecobiotechnology 3: 14–23.

    Google Scholar 

  • Borowitzka, M.A., and M.A. Borowitzka. 1987. Calcification in algae: Mechanisms and the role of metabolism. CRC. Critical Reviews in Plant Sciences 6: 1–45.

    Article  Google Scholar 

  • Brotas, V., and M.R. Plante-Cuny. 1998. Spatial and temporal patterns of microphytobenthic taxa of estuarine tidal flats in the Tagus Estuary (Portugal) using pigment analysis by HPLC. Marine Ecology Progress Series 171: 43–57.

    Article  Google Scholar 

  • Brotas, V., and M.R. Plante-Cuny. 2003. The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecologica 24: S109–S115.

    Article  Google Scholar 

  • Caers, M., P. Coutteau, and P. Sorgeloos. 2000. Incorporation of different fatty acids, supplied as emulsions or liposomes, in the polar and neutral lipids of Crassostrea gigas spat. Aquaculture 186: 157–171.

    Article  CAS  Google Scholar 

  • Cavalli, R.O., P. Lavens, and P. Sorgeloos. 1999. Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture 179: 387–402.

    Article  CAS  Google Scholar 

  • Chien, Y.H., and S.C. Jeng. 1992. Pigmentation of kuruma prawn (Penaeus japonicus Bate) by various pigment sources and levels and feeding regimes. Aquaculture 102: 333–346.

    Article  Google Scholar 

  • Chiu, L., M. Huei, S. Emily, and Y. Chang. 2001. Techniques in finfish larviculture in Taiwan. Aquaculture 200: 1–31.

    Article  Google Scholar 

  • Cobb, B.F., F.S. Conte, and M.A. Edwards. 1975. Free amino acids and osmoregulation in penaeid shrimp. Journal of Agricultural and Food Chemistry 23: 1172–1174.

    Article  CAS  Google Scholar 

  • Deshimaru, O., and K. Shigeno. 1972. Introduction to the artificial diet for prawn Penaeus japonicus. Aquaculture 1: 115–133.

    Article  CAS  Google Scholar 

  • Dic Lifetec Co L.T.D. 2009. Nutritional elements contained in DIC Spirulina. Disponível em: Acessoem: Nov. 2012.

    Google Scholar 

  • Droop, M.R. 1967. A procedure for routine purification of algal cultures with antibiotics. British Phycological Bulletin 3: 295–297.

    Article  Google Scholar 

  • Duarte, C.M., M. Holmer, Y. Olsen, D. Soto, N. Marbà, J. Guiu, K. Black, and I. Karakassis. 2009. Will the oceans help feed humanity. Bioscience 59 (11): 967.

    Article  Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 18: 350–356.

    Article  Google Scholar 

  • Fang, L.S., C.K. Tang, D.L. Lee, and I.M. Chen. 1992. Free amino acid composition in muscle and hemolymph of the prawn Penaeus monodon in different salinities. Nippon Suisan Gakkaishi 58: 1095–1102.

    Article  CAS  Google Scholar 

  • FAO. 2009. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome, Italy, p. 196.

    Google Scholar 

  • Folch, J., M. Lees, and G.M. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497–509.

    CAS  Google Scholar 

  • Fox, J.M., D.A. Davis, M. Wilson, and A.L. Lawrence. 2004. Current status of Amino acid requeriment research with Marine Penaeid Shrimp. NutriciónAcuícola. In Avances enNutricionAcuicola. VIIISimposium Internacional de NutriciónAcuícola. Noviembre, ed. E.C.L. Suarez, D.R. Marie, M.T. Salazar, M.G.N. Lopez, D.A.V. Cavazos, A.C.P. Cruz, and y Ortega A G, 15–17. Monterrey/Nuevo León/Mexico: Universidad Autónoma de Nuevo Leon.

    Google Scholar 

  • Gade, G., and M.K. Grieshaber. 1986. Pyruvate reductase catalyze the formation of lactate and opines in anaerobic invertebrates. Comparative Biochemistry and Physiology 83: 255–272.

    Article  Google Scholar 

  • Gadelha, I.C.N., A.H.N. Rangel, A.R. Silva, N.M. Almedia, and A.H.N. Silva. 2013. Effect of Spirulina platensis on the productive performance of Litopenaeus vannamei (Boone, 1931) shrimp. International Journal of Agricultural Science Research 2 (9): 273–278.

    Google Scholar 

  • García-Plazaola, José Ignacio, Raquel Esteban, Beatriz Fernández-Marín, Ilse Kranner, and Albert Porcar-Castell. 2012. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynthesis Research 113 (1-3): 89–103.

    Article  CAS  Google Scholar 

  • Gouveia, L., and J. Emphis. 2003. Relative stability of microalgal carotenoids in microalgal extracts, biomass and fish feed: Effect of storage conditions. Innovative Food Science and Emerging Technologies 4: 227–233.

    Article  CAS  Google Scholar 

  • Guillaume, J. 1997. Protein and amino acids. In Crustacean Nutrition, Advances in World Aquaculture, ed. L.R. D’Abramo, D.E. Conklin, and D.M. Akiyama, vol. 6, 26–50. Baton Rouge: World Aquaculture Society.

    Google Scholar 

  • Hanaa, H., K. Abd EI-Baky, E.I. Baz, and E.I. Baroty. 2003. Spirulina species as a source of carotenoid and tocopherol and its Anticarcinoma factors. Biotechnology 2 (3): 222–240.

    Article  Google Scholar 

  • Holme, M.H., C. Zeng, and P.C. Southgate. 2009. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture 286 (3–4): 164–175.

    Article  Google Scholar 

  • Hu, Q. 2004. Environmental effects on cell composition. In Handbook of Microalgal Culture, ed. A. Richmond, 83–93. Oxford: Blackwell.

    Google Scholar 

  • IFFO. 2006. Fishmeal industry overview. International Fishmeal and Fish Oil Organization. www.iffo.org.

  • Izquierdo, M.S., H. Fernandez-Palacios, and A.G.J. Tacon. 2001. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197: 25–42.

    Article  Google Scholar 

  • Jeffrey, S.W., R.F.C. Mantoura, and S.W. Wright. 1997. Phytoplankton pigments in oceanography, 661. Paris: Unesco Publishing.

    Google Scholar 

  • Jeffs, A.G., C.H. Phleger, M.M. Nelson, B.D. Mooney, and P.D. Nichols. 2002. Marked depletion of polar lipid and non-essential fatty acids following settlement by post-larvae of the spiny lobster Jasus verreauxi. Comparative Biochemistry and Physiology 131: 305–311.

    Article  Google Scholar 

  • Khatoon, N., A. Chaudhuri, R.S. Sen, N. Kundu, S. Mukherjee, D. Majumdar, S. Homechaudhuri, and R. Pal. 2010. Algae as feed supplement in fish nutrition. Journal of Botanical Society of Bengal 64 (2): 85–93.

    Google Scholar 

  • Kraay, G.W., M. Zapata, and M.J. Veldhuis. 1992. Separation of chlorophylls c1, c2, and c3 of marine phytoplankton by reversed-phase-C18-highperformance liquid chromatography. Journal of Phycology 28: 708–712.

    Article  CAS  Google Scholar 

  • Kureshy, N., and D.A. Davis. 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 204: 125–143.

    Article  CAS  Google Scholar 

  • Le Bris, S., M.-R. Plante-Cuny, and E. Vacelet. 1998. Characterisation of bacterial and algal pigments and breakdown products by HPLC in mixed freshwater planktonic populations. Fundamental and Applied Limnology 143 (4): 409–434.

    Article  CAS  Google Scholar 

  • Lee, Y.K. 1997. Commercial production of micro algae in the Asia Pacific rim. Journal of Applied Phycology 9: 403–411.

    Article  Google Scholar 

  • Lin, C.Y., H.A. Lin, and L.B. Hung. 2006. Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel 85: 1743–1749.

    Article  CAS  Google Scholar 

  • Mustafa, M.G., and H. Nakagawa. 1995. A review: Dietary benefits of algae as an additive in fish feed. The Israeli Journal of Aquaculture – Bamidgeh 47: 155–162.

    Google Scholar 

  • Navarro, J.C., and R. Villanueva. 2000. Lipid and fatty acid composition of early stages of cephalopods: An approach to their lipid requirements. Aquaculture 183: 161–177.

    Article  CAS  Google Scholar 

  • Naylor, R.L., R.W. Hardy, D.P. Bureau, A. Chiu, A. Elliott, A.P. Farrell, I. Forster, D.M. Gatlin III, R.J. Goldburg, K. Hua, and P.D. Nichols. 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the United States of America 106: 15103–15110.

    Article  CAS  Google Scholar 

  • NeÁgre-Sadargues, G., R. Castillo, H. Petit, S. Sance, R. Gomez-Martinz, J.C.G. Milicua, G. Choubert, and J.P. Trilles. 1993. Utilization of synthetic carotenoids by the prawn Penaeus japonicus reared under laboratory conditions. Aquaculture 110: 151–159.

    Article  Google Scholar 

  • Nelson, M.M., D.L. Leighton, C.F. Phleger, and D.P. Nichols. 2002. Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comparative Biochemistry and Physiology 131: 695–712.

    Article  Google Scholar 

  • Nonwachai, T., W. Purivirojkul, C. Limsuwan, N. Chuchird, M. Velasco, and A.K. Dhar. 2010. Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish & Shellfish Immunology 29: 298–304.

    Article  CAS  Google Scholar 

  • NRC National Research Council. 1993. Nutrient requirements of fish, Committee on animal nutrition. Board on agriculture, 114. Washington DC: National Research Council. National Academy Press.

    Google Scholar 

  • Plante-Cuny, Marie-Reine, Christiane Barranguet, Daniel Bonin, and Christian Grenz. 1993. Does chlorophyllidea reduce reliability of chlorophylla measurements in marine coastal sediments? Aquatic Sciences 55 (1): 19–30.

    Article  Google Scholar 

  • Priyadarshani, I., and R. Biswajit. 2012. Commercial and industrial applications of micro algae – A review. Journal of Algal BiomassUtilization 3 (4): 89–100.

    Google Scholar 

  • Rajendran, M., 1973. A guide to the study of freshwater calanoids. Journal of Madurai Kamaraj University (Suppl.1), 86, Madurai.

    Google Scholar 

  • Savelieva, K.V., S. Zhao, and V.M. Pogorelov. 2008. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3: 3301.

    Article  CAS  Google Scholar 

  • Shen, T., and J.Y. Wang. 1990. Biochemistry, 67–86. Beijing: Higher Education Publisher.

    Google Scholar 

  • Stechmiller, J.K., B. Langkamp-Henken, B. Childress, K.A. Herrlinger-Garcia, J. Hudgens, and L. Tian. 2005. Arginine supplementation does not enhance serum nitric oxide levels in elderly nursing home residents with pressure ulcers. Biological Research for Nursing 6: 289–299.

    Article  Google Scholar 

  • Suarez, J.A., G. Gaxiola, R. Mendoza, S. Cadavid, G. Garcia, G. Alanis, A. Suarez, J. Faillace, and G. Cuzon. 2009. Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 289: 118–123.

    Article  CAS  Google Scholar 

  • Tacon, A.G.J., and M. Metian. 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 285: 146–158.

    Article  CAS  Google Scholar 

  • Tapiero, H., G. Mathe, P. Couvreur, and K.D. Tew. 2002. Glutamine and glutamate. Biomedicine & Pharmacotherapy 56: 446–457.

    Article  CAS  Google Scholar 

  • Tartiel, M., M. Badwy, E. M. Ibrahim, and M. M. Zeinhom. 2008. Partial replacement of fishmeal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. 8th international symposium on tilapia in aquaculture, 801–811. Central Laboratory for Aquaculture Research, Agricultural Research Center, Ministry of Agriculture, Egypt.

    Google Scholar 

  • Thompson, A.B., A.S. McGill, J. Murray, R. Hardy, and P.F. Howgate. 1980. The analysis of a range of non-volatile constituents of cooked haddock (Gadus aeglefinus) and the influence of these on flavor. In Advances in Fish Science and Technology, ed. J.J. Connell, 484. Farnham: Fishing Books.

    Google Scholar 

  • Trinadha, B., R. Prabhakara, R. Madhavi, 2003. Potential benefits of algae in shrimp disease management. Fish Chimes 23(1).

    Google Scholar 

  • Venkataraman, L.V. 1980. Algae as food/feed: A critical appraisal based on Indian experience. In Proceedings National Workshop on Algal Systems, ed. C.V. Seshadri, S. Thomas, and N. Jeegibai, 83–134. New Delhi: Indian Society of Biotechnology.

    Google Scholar 

  • Wang, W.N., A.L. Wang, L. Bao, J.P. Wang, Y. Lui, and R.Y. Sun. 2004. Changes of protein-bound and free amino acids in the muscle of the freshwater prawn Macrobrachium nipponense in different salinities. Aquaculture 233: 561–571.

    Article  CAS  Google Scholar 

  • Wilson, R.P. 1989. Protein and amino acid requirements of fishes. In Progress in Fish Nutrition, ed. S.Y. Shiau, 51–76. Keelung: National Taiwan Ocean University.

    Google Scholar 

  • ———., 2002. Protein and amino acids. In: Fish Nutrition (3rd version) ed. Halver JE and Hardy RW, 144–179, San Diego: Elsevier Science.

    Google Scholar 

  • Witte, M.B., and A. Barbul. 2003. Arginine physiology and its implication for wound healing. Wound Repair and Regeneration 11: 419–423.

    Article  Google Scholar 

  • Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta, and N. Welschmeyer. 1991a. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183–196.

    Article  CAS  Google Scholar 

  • Yamada, S., Y. Tanaka, M. Sameshima, and Y. Ito. 1990. Pigmentation of prawn (Penaeus japonicus) with carotenoids. Effect of dietary astaxanthin, beta-carotene and canthaxanthin on pigmentation. Aquaculture 87: 323–330.

    Article  CAS  Google Scholar 

  • Yamaguchi, K. 1997. Recent advances in micro algal bioscience in Japan, with special reference to utilization of biomass & metabolites: A review. Journal of Applied Phycology 8: 227–233.

    Google Scholar 

  • Yone, Y., M. Furuichi, and K. Urano. 1986. Effects of dietary wakame Undaria pinnatifida and Ascophyllum nodosum supplements on growth, feed efficiency and proximate compositions of liver and muscle of red sea bream. Bulletin of the Japanese Society of Scientific Fisheries 52: 1465–1468.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the authorities of Bharathidasan University for providing the necessary facilities, and the first author thanks the University Grants Commission, Govt. of India, New Delhi, for financial support through UGC-Rajiv Gandhi National Fellowship. Authors are grateful to the Department of Biotechnology, Govt. of India, New Delhi, for providing microalgae culture facility through extramural project (BT/PR 5856/AAQ/3/598/2012).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenbaga Devi, A., Santhanam, P., Jeyanthi, S., Krishnaveni, N. (2019). Isolation, Culture, and Application of Marine Microalga Dunaliella salina (Volvocales, Chlorophyceae) as an Aqua Feed Additive. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Phytoplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7938-2_6

Download citation

Publish with us

Policies and ethics