Skip to main content

A Study of Carbon Sequestration by Phytoplankton

  • Chapter
  • First Online:
Book cover Basic and Applied Phytoplankton Biology

Abstract

Climate change is one of the most serious threats for sustainable development of human society. The release of carbon dioxide (CO2) from the atmosphere due to anthropogenic activities is one of the main causes of global warming and climate change. Reducing CO2 emission and increasing carbon storage are the two major solutions to control greenhouse effects. China is now one of the world’s largest greenhouse emitters, and actively dealing with climate change by reducing emission and increasing storage has become China’s strategic consensus for economic and social development. Oceans cover approximately 71% of the Earth’s surface, and the carbon content present in the ocean is 50 times that in the atmosphere and 20 times that in the soil (Holmén 2000). Therefore, oceans are the largest carbon pools on Earth, and it also serves as a “buffer” for climate change. Approximately 30% of the CO2 produced by anthropogenic activities is absorbed by oceans (Le Quere et al. 2014) (otherwise global warming would have become more intense). In particular, the coastal oceans are mostly affected by anthropogenic activities, which account for only 8% of the global ocean area, but the amount of 20% CO2 is taken by open oceans (Field et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, E.D., and D.H.N. Spence. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in freshwaters. The New Phytologist 87: 269–283.

    Article  CAS  Google Scholar 

  • Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C. Bakker, A.R. Bowie, K.O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. Liddicoat, R. Ling, M.T. Maldonado, R.M. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite, and J. Zeldis. 2004. The decline and fate of an iron induced sub-arctic phytoplankton bloom. Nature 428: 549–553. https://doi.org/10.1038/nature02437.

    Article  CAS  Google Scholar 

  • Burkhardt, S., G. Amoroso, U. Riebesell, and D. Sultemeyer. 2001. CO2 and HCO3 uptake by marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography 46: 1378–1391.

    Article  CAS  Google Scholar 

  • Burns, B.D., and J. Beardall. 1987. Utilization of inorganic carbon by marine microalgae. Experimental Marine Biology and Ecology 107: 75–86.

    Article  CAS  Google Scholar 

  • Chapin, F.S., P.A. Matson, and H.A. Mooney. 2002. Principles of Ecosystems of Ecology. Vol. 405, 234–242. New York: Springer.

    Google Scholar 

  • Chisholm, S.W., P.G. Falkowski, and J.J. Cullen. 2001. Discrediting ocean fertilization. Science 294: 309–310.

    Article  CAS  Google Scholar 

  • Clark, D.R., and K.J. Flynn. 2000. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proceedings of the Royal Society of London – Series B: Biological Sciences 267: 953–959.

    Article  CAS  Google Scholar 

  • Falkowski, P.G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275.

    Article  CAS  Google Scholar 

  • Falkowshi, P., R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogbeng, S. Linder, F.T. Mackenizie, B. Moore, T. Pedersen, Y. Arosenthal, S. Seitzinger, V. Smetacek, and W. Steffen. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291–296.

    Article  Google Scholar 

  • Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240.

    Article  CAS  Google Scholar 

  • Folger, P. 2009. The Carbon Cycle: Implications for Climate Change and Congress, Congressional Research Service Report RL34059, 7–57.

    Google Scholar 

  • Holmen, K. 2000. The global carbon cycle. International Geophysics 72: 282–321.

    Article  Google Scholar 

  • IPCC. 2007. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the IPCC on Climate Change, ed. S.D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquie, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson, K.S., D.M. Karl, S.W. Chisholm, P.G. Falowski, and J.J. Cullen. 2002. Is ocean fertilization credible and creditable? Science 296: 467–468.

    Article  CAS  Google Scholar 

  • Le Quere, C., G.P. Peters, R.J. Andres, R.M. Andrew, T.A. Boden, P. Ciais, P. Friedlingstein, R.A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D.C.E. Bakker, L. Bopp, J.G. Canadell, L.P. Chini, S.C. Doney, A. Harper, I. Harris, J.I. House, A.K. Jain, S.D. Jones, E. Kato, R.F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.H. Park, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B.D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle. 2014. Global carbon budget 2013. Earth System Science Data 6: 235–263.

    Article  Google Scholar 

  • Lurling, M., and W. Beekman. 1999. Grazer-induced defenses in Scenedesmus sp.(Chlorococcales; Chlorophyceae): Coenobium and spine formation. Phycologia 38: 368–376.

    Article  Google Scholar 

  • Maberly, S.C. 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579–598.

    Article  CAS  Google Scholar 

  • Maberly, S.C., and D.H.N. Spence. 1983. Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology 71: 705–724.

    Article  CAS  Google Scholar 

  • Martin, J.H., and S.E. Fitzwater. 1988. Iron deficiency limits of phytoplankton growth in the North-East Pacific sub-Arctic. Nature 331: 341–343.

    Article  CAS  Google Scholar 

  • Martin, J.H., K.H. Coale, K.D. Johnson, S.E. Fitzwater, R.M. Garden, S.J. Tanner, C.N. Hunter, V.A. Elrod, J.L. Nowicki, T.L. Coley, R.T. Barber, S. Lindley, A.J. Watson, K. Vanscoy, C.S. Law, Mi. Liddi coat, R. Ling, T. Staton, J. Stockel, C. Collins, A. Anderson, R. Bidicare, M. Ondrusek, M. Latasa, F.J. Millero, K. Lee, W. Yao, J.Z. Zhang, G. Friederich, C. Sakamoto, F. Chavez, K. Buck, Z. Kolber, R. Greene, P. Falkowski, S.W. Chiswholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Nightgale, A. Hatton, P. Liss, and N.W. Tindale. 2002. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129.

    Article  Google Scholar 

  • Munoz, J., and M.J. Merrett. 1988. Inorganic-carbon uptake by a small-shelled strain of Stichococcus bacillaris. Planta 175: 460–464.

    Article  CAS  Google Scholar 

  • Nimer, N.A., and M.J. Merrett. 1992. Calcification and utilization of inorganic carbon by the Coccolithophorid Emiliania huxleyi (Lohmann). The New Phytologist 121: 173–177.

    Article  CAS  Google Scholar 

  • Raven, J.A., and P.G. Falkowski. 1999. Oceanic sinks for atmospheric CO2. Plant, Cell & Environment 22: 741–755.

    Article  CAS  Google Scholar 

  • Rivkin, R.B., and L. Legendre. 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science 291: 2398–2400.

    Article  CAS  Google Scholar 

  • Rost, B., U. Riebesell, and S. Burkhardt. 2003. Carbon acquisition of bloom forming marine phytoplankton. Limnology and Oceanography 48: 55–67.

    Article  Google Scholar 

  • Schippers, Peter, Antonie M. Verschoor, Matthijs Vos, and Wolf M. Mooij. 2001. Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecology Letters 4 (5): 404–407.

    Article  Google Scholar 

  • Schippers, P., J.E. Vermaat, J. de Klein, and W.M. Mooij. 2004. The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems. Ecosystems 7: 63–74.

    Article  CAS  Google Scholar 

  • Siegenthaler, U., and J.L. Sarmiento. 1993. Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.

    Article  CAS  Google Scholar 

  • Stumm, W., and J.J. Morgan. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: John Wiley & Sons. 780p.

    Google Scholar 

Download references

Acknowledgement

Authors thanks the University Grants Commission, Govt. of India, New Delhi, for fellowship (MD) and Postdoctoral Fellowship (SDK) (Ref. No. F./31-1/2017/PDFSS-2017-18-TAM-13681 dated 19.06.2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Divya, M., Dinesh Kumar, S., Krishnaveni, N., Santhanam, P. (2019). A Study of Carbon Sequestration by Phytoplankton. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Phytoplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7938-2_15

Download citation

Publish with us

Policies and ethics