Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 267 Accesses

Abstract

The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N= 4.35–25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54–1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N= 2.70–13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09–3.56) and peraluminous (A/CNK = 0.91–1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey DK (1980) Volcanism, earth degassing and replenished lithosphere mantle. Phil Trans R Soc Lond A, Math Phys Sci 297(1431):309–322

    Article  Google Scholar 

  2. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46(3):605–626

    Article  Google Scholar 

  3. Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans R Soc Edinb: Earth Sci 83(1–2):145–153

    Article  Google Scholar 

  4. Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3):197–213

    Article  Google Scholar 

  5. Blundy J, Wood B (2003) Mineral-melt partitioning of uranium, thorium and their daughters. Rev Mineral Geochem 52(1):59–123

    Article  Google Scholar 

  6. Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78(1):1–24

    Google Scholar 

  7. Bonin B, Giret A (1990) Plutonic alkaline series: Daly gap and intermediate compositions for liquids filling up crustal magma chambers. Schweizerische Mineralogische und Petrographische Mitteilungen (Bull Suisse Minéral et Pétrogr) 70(2):175–187

    Google Scholar 

  8. Bonin B, Azzouni-Sekkal A, Bussy FO et al (1998) Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45(1):45–70

    Article  Google Scholar 

  9. Boyd FR, Gurney JJ (1986) Diamonds and the African lithosphere. Science 232(4749):472–477

    Article  Google Scholar 

  10. Brown M (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior? When Did Plate Tectonics Begin on Planet Earth? 440:97

    Article  Google Scholar 

  11. Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28(4):310–318

    Article  Google Scholar 

  12. Burns RG (1973) The partitioning of trace transition elements in crystal structures: a provocative review with applications to mantle geochemistry. Geochim Cosmochim Acta 37(11):2395–2403

    Article  Google Scholar 

  13. Burns RG (1993) Mineralogical applications of crystal field theory, vol 5. Cambridge University Press

    Google Scholar 

  14. Burns RG, Fyfe WS (1967) Crystal-field theory and the geochemistry of transition elements. Res Geochem 2:259–285

    Google Scholar 

  15. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46(3):535–551

    Article  Google Scholar 

  16. Chen B, Jahn B (2004) Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. J Asian Earth Sci 23(5):691–703

    Article  Google Scholar 

  17. Chen DL, Liu L, Che ZC et al (2001) Determination and preliminary study of Indosinian aluminous A-type granites in the Qimantag area, southeastern Xinjiang. Geochimica 30(6):540–546

    Google Scholar 

  18. Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Mineral 71(3–4):317–324

    Google Scholar 

  19. Collins WJ, Beams SD, White AJR et al (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80(2):189–200

    Article  Google Scholar 

  20. Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19(2):163–166

    Article  Google Scholar 

  21. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(1):115–134

    Article  Google Scholar 

  22. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20(7):641–644

    Article  Google Scholar 

  23. Eklund O, Konopelko D, Rutanen H et al (1998) 1.8 Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield. Lithos 45(1):87–108

    Article  Google Scholar 

  24. Ersoy EY (2013) PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turk J Earth Sci 22(1):

    Google Scholar 

  25. Esna-Ashari A, Tiepolo M, Valizadeh M et al (2012) Geochemistry and zircon U-Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran. J Asian Earth Sci 43(1):11–22

    Google Scholar 

  26. Eyal M, Litvinovsky B, Jahn BM et al (2010) Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol 269(3–4):153–179

    Article  Google Scholar 

  27. Fan JJ, Li C, Xie CM et al (2015) Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos 227:148–160

    Article  Google Scholar 

  28. Feng CY, Li DS, Wu ZS, Li JH, Zhang ZY, Zhang AK, Shu XF, Su SS (2010) Major types, time-space distribution and metallogenesis of polymetallic deposits in the Qimantage metallogenic belt, eastern Kunlun area. Northwestern Geol 43:10–17

    Google Scholar 

  29. Feng CY, Wang XP, Shu XF, Zhang AK, Xiao Y, Liu JN, Ma SC, Li GC, Li DX (2011) Isotopic chronology of the Hutouya skarn lead-zinc polymetallic ore district in Qimatage area of Qinghai Province and its geological significance. J Jilin Univ (Earth Sci Ed) 41(6):1806–1818

    Google Scholar 

  30. Feng CY, Wang S, Li GC et al (2012) Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: chronology, geochemistry and metallogenic significances. Acta Petrol Sin 28(2):665–678

    Google Scholar 

  31. Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 39–53

    Article  Google Scholar 

  32. Frost BR, Barnes CG, Collins WJ et al (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    Article  Google Scholar 

  33. Hans Wedepohl K (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  Google Scholar 

  34. Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol 26(2):125–154

    Article  Google Scholar 

  35. Harris NBW, Kelley S, Okay AI (1994) Post-collision magmatism and tectonics in northwest Anatolia. Contrib Mineral Petr 117(3):241–252

    Article  Google Scholar 

  36. Holloway JR, Ford CE (1975) Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25(1):44–48

    Article  Google Scholar 

  37. Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    Article  Google Scholar 

  38. Jahn BM, Wu F, Capdevila R, Martineau F, Zhao Z, Wang Y (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 59(4):171–198

    Article  Google Scholar 

  39. Jahn B, Wu F, Lo C et al (1999) Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157(1):119–146

    Article  Google Scholar 

  40. Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res 4(1):117–132

    Article  Google Scholar 

  41. Keskin M (1994) Genesis of collision-related volcanism on the Erzurum-kars plateau, North eastern Turkey. Durham University, pp 1–363

    Google Scholar 

  42. Lameyre J (1988) Granite settings and tectonics. Rend Soc It Miner Petrol 43:215–236

    Google Scholar 

  43. Li C, Zhai QG, Dong YS et al (2008) Oceanic crust on the northern margin of Gondwana: evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau. Geol Bull China 27:1605–1612

    Google Scholar 

  44. Liu YH, Mo XX, Yu XH, Zhang XT, Xu GW (2006) Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the east Kunlun and its geological significance. Acta Petrol Sin 22(10):2457–2463

    Google Scholar 

  45. Liu JN, Feng CY, Zhao YM et al (2013) Characteristics of intrusive rock, metasomatites, mineralization and alteration in Yemaquan skarn Fe-Zn polymetallic deposit, Qinghai Province. Miner Depos 1:008

    Google Scholar 

  46. Liégeois J, Black R (1987) Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). Geol Soc Lond Spec Publ 30(1):381–401

    Article  Google Scholar 

  47. Liégeois J, Navez J, Hertogen J et al (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45(1):1–28

    Article  Google Scholar 

  48. Luo ZH, Ke S, Cao YQ, Deng JF, Zhan HW (2002) Late Indosinian mantle-derived magmatism in the East Kunlun. Geol Bull China 21(6):292–297

    Google Scholar 

  49. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101(5):635–643

    Article  Google Scholar 

  50. Mao JW, Li HY, Pei RF (1995) Nd-Sr isotopic and petrogenetic studies of the Qianlishan granite stock, Hunan Province. Miner Depos 14(3):235–242

    Google Scholar 

  51. Martin RF (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91(1):125–136

    Article  Google Scholar 

  52. McDonough WF, Sun S, Ringwood AE et al (1992) Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56(3):1001–1012

    Article  Google Scholar 

  53. Munoz JL, Ludington SD (1974) Fluoride-hydroxyl exchange in biotite. Am J Sci 274(4):396–413

    Article  Google Scholar 

  54. Nakamura D (2003) Stability of phengite and biotite in eclogites and characteristics of biotite- or orthopyroxene-bearing eclogites. Contrib Mineral Petrol 145(5):550–567

    Article  Google Scholar 

  55. O’Brien PJ, Rotzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21(1):3–20

    Article  Google Scholar 

  56. Parada MA, Nyström JO, Levi B (1999) Multiple sources for the Coastal Batholith of central Chile (31-34 S): geochemical and Sr-Nd isotopic evidence and tectonic implications. Lithos 46(3):505–521

    Article  Google Scholar 

  57. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19(4):120–125

    Google Scholar 

  58. Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. Geol Soc Lond Spec Publ 76(1):373–403

    Article  Google Scholar 

  59. Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    Article  Google Scholar 

  60. Poli GE, Tommasini S (1991) Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. J Petrol 32(3):657–666

    Article  Google Scholar 

  61. Rapp PR (1997) Heterogeneous source regions for Archean granitoids. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford

    Google Scholar 

  62. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  63. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51(1):1–25

    Article  Google Scholar 

  64. Rapp RP, Shimizu N, Norman MD et al (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160(4):335–356

    Article  Google Scholar 

  65. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  66. Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107(1):41–59

    Article  Google Scholar 

  67. Rutter MJ, Wyllie PJ (1988) Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature 331(6152):159–160

    Article  Google Scholar 

  68. She HQ, Zhang DQ, Jing XY, Guan J, Zhu HP, Feng CY, Li DX (2007) Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai. Geol China 2:013

    Google Scholar 

  69. Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182(1):115–125

    Article  Google Scholar 

  70. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contrib Mineral Petrol 123(3):263–281

    Article  Google Scholar 

  71. Stüwe K (2007) Geodynamics of the lithosphere: an introduction. Springer

    Google Scholar 

  72. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  73. Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97(3):261–280

    Article  Google Scholar 

  74. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford, pp 1–312

    Google Scholar 

  75. Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28(2):151–179

    Article  Google Scholar 

  76. Vervoort JD, Patchett PJ, Gehrels GE et al (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379:624–627

    Article  Google Scholar 

  77. Wang BZ, Luo ZH, Li HY, Shen HW, Hu XL (2009) Petrotectonic assemblages and temporal-spatial framework of the Late Paleozoic-Early Mesozoic intrusions in the Qimantage Corridor of the East Kunlun belt. Geol China 36(4):769–782

    Google Scholar 

  78. Wang S, Feng CY, Li SJ, Jiang JH, Li DS, Su SS (2009) Zircon SHRIMP U-Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qinmantage Mountain, Qinghai Province, and its geological implications. Geol China 36(1):74–84

    Google Scholar 

  79. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95(4):407–419

    Article  Google Scholar 

  80. Wu YZ, Qiao GB, Chen DH (2011) A preliminary study on relationship between tectonic magmatism and mineralization in Qimantage area, Eastern Kunlun Mountains. Geotecton Metallog 35:232–241

    Google Scholar 

  81. Wu F, Sun D, Li H et al (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187(1):143–173

    Article  Google Scholar 

  82. Xi RG, Xiao PX, Wu YZ (2010) The Geological significances, composition and age of the monzonitic granite in Kendekeke iron mine. Northwestern Geol 43(4):195–202

    Google Scholar 

  83. Xiao Y, Feng CY, Liu JN, Yu M, Zhou JH, Li DX, Zhao YM (2013) LA-MC-ICP-MS zircon U-Pb dating and sulfur isotope characteristics of Kendekeke Fe-polymetallic deposit. Qinghai Province. Miner Depos 32(1):177–186

    Google Scholar 

  84. Xu ZQ, Yang JS, Li HB et al (2006) The Qinghai-Tibet plateau and continental dynamics: a review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geol China 33(2):221–238

    Google Scholar 

  85. Yogodzinski GM, Kay RW, Volynets ON et al (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107(5):505–519

    Article  Google Scholar 

  86. Yu M (2013) Geochemistry and zonation of the Galinge iron deposit, Qinghai province. China University of Geosciences (Beijing), Beijing

    Google Scholar 

  87. Zhang AK (2012) Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province. China University of Geosciences, Beijing, pp 1–155

    Google Scholar 

  88. Zhang AK, Liu GL, Mo XX et al (2012) Relationship between tectonic settings and metallogenesis of Late Paleozoic-Early Mesozoic intrusive rock in Qimantage, Qinghai Province. Northwestern Geol 1:005

    Google Scholar 

  89. Zou H (1998) Trace element fractionation during modal and nonmodal dynamic melting and open-system melting: a mathematical treatment. Geochim Cosmochim Acta 62(11):1937–1945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Genesis of Post-collisional Calc-Alkaline and Alkaline Granitoids in Qiman Tagh. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_9

Download citation

Publish with us

Policies and ethics