Skip to main content

Formation and Breakdown of Ilvaite in the Large Galinge Skarn Fe Deposit, Western China: A Record of Multistage Retrograde Alteration

  • Chapter
  • First Online:
Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province

Part of the book series: Springer Theses ((Springer Theses))

  • 278 Accesses

Abstract

The Galinge deposit, the largest Fe skarn deposit in the Qiman Tagh porphyry-skarn metallogenic belt (western China), is noteworthy for its well-developed Ca-rich retrograde alteration. The ilvaite-bearing skarn associations were studied to determine their physicochemical formation conditions. Petrographic evidence for replacement of garnet and magnetite by ilvaite in the early retrograde stage (Stage I) combined with thermodynamic modeling suggests that the alteration may have occurred at ca. 400°C – 470°C under moderately high oxygen fugacity (ΔlogfO2(HM): ca. -4 − -4.2). The model is based on a maximum pressure of 0.5 kbar calculated from magmatic amphibole geobarometer. The continuous breakdown of ilvaite with quartz to form ferro-actinolite and magnetite occur in the late retrograde stage (Stage II). The reactions occurred at about 400°C – 440°C under moderate fO2 (ΔlogfO2(HM): ca. -4 − -4.4). In Stage III, the breakdown of ilvaite to form calcite, pyrite and ferroactinolite depends on X(CO2) which is unknown but can be estimated to be a range of 0.005 to 0.05.Under these conditions the breakdown occurs at ca. 270–350°C and low fO2 (up to -5.2 log units below HM), but the reaction would occur at higher temperatures with increasing X(CO2). The thermodynamic model for continuous evolution from Stage I to Stage III completely records the conditions of the retrograde alteration. Although Mn is absent, the presence of substantial Fe and Mg strongly affects the stability field of ilvaite in the skarn system. Therefore, the petrography and phase relations of ilvaite are useful indicators of reaction conditions in various skarn deposit types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashley PM (1980) Geology of the Ban Ban zinc deposit, a sulfide-bearing skarn, southeast Queensland, Australia. Econ Geol 75(1):15–29

    Article  Google Scholar 

  2. Bartholomé P, Dimanche F (1968) On the paragenesis of ilvaite in Italian skarns. Publication/Laboratoires de geologie de la Faculte des sciences appliquees. Universite de Liege, p 51

    Google Scholar 

  3. Barton M, van Bergen MJ (1984) Secondary ilvaite in a dolerite dyke from Rogaland, SW Norway. Mineral Mag 48:449–456

    Article  Google Scholar 

  4. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522

    Article  Google Scholar 

  5. Berman RG (2007) WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geol Surv Can Open File 5462:41

    Google Scholar 

  6. Bonazzi P, Bindi L (2002) Structural properties and heat-induced oxidation-dehydrogenation of manganoan ilvaite from Perda Niedda mine, Sardinia, Italy. Am Mineral 87(7):845–852

    Article  Google Scholar 

  7. Bonev IK, Vassileva RD, Zotov N, Kouzmanov K (2005) Manganilvaite, CaFe2 + Fe3 + (Mn, Fe2 +)(Si2O7)O(OH), a new mineral of the ilvaite group from Pb-Zn skarn deposits in the Rhodope Moutntains, Bulgaria. Can Mineral 43(3):1027–1042

    Article  Google Scholar 

  8. Brathwaite RL, Isaac MJ, Challis GA, Brook FJ (1990) Tertiary limestone and Zn-Pb mineralised skarn at Motukokako, Cape Brett, northern New Zealand. J R Soc N Z 20(4):427–438

    Article  Google Scholar 

  9. Burt DM (1971) Multisystems analysis of the relative stabilities of babingtonite and ilvaite. Carnegie Inst Wash Year Book 70:189–197

    Google Scholar 

  10. Carrozzini B (1994) Crystal structure refinements of ilvaite: new relationships between chemical composition and crystallographic parameters. Eur J Mineral 6(4):465–479

    Article  Google Scholar 

  11. Delgado J, Soler A (2010) Ilvaite stability in skarns from the northern contact of the Maladeta batholith, Central Pyrenees (Spain). Eur J Mineral 22(3):363–380

    Article  Google Scholar 

  12. Dick JM (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9(1):1–17

    Article  Google Scholar 

  13. Dünkel I (2002) The genesis of East Elba iron ore deposits and their interrelation with Messinian tectonics. Universität Tübingen

    Google Scholar 

  14. Einaudi MT, Burt DM (1982) A special issue devoted to skarn deposits (Introduction-terminology, classification, and composition of skarn deposits). Econ Geol 77(4):745–754

    Article  Google Scholar 

  15. Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391

    Google Scholar 

  16. Franchini MB, Meinert LD, Vallés JM (2002) First occurrence of ilvaite in a gold skarn deposit. Econ Geol 97(5):1119–1126

    Article  Google Scholar 

  17. Ghose S, Sen Gupta PK, Schlemper EO (1985) Electron ordering in ilvaite, a mixed-valence iron silicate: crystal structure refinement at 138 K. Am Miner 70:1248–1252

    Google Scholar 

  18. Ghose S, Tsukimura K, Hatch DM (1989) Phase transitions in ilvaite, a mixed-valence iron silicate. Phys Chem Miner 16(5):483–496

    Article  Google Scholar 

  19. Gole MJ (1972) Iron Calc-silicate Rocks at Black Perry Mountain, Talbingo, Southern New South Wales. Macquarie University, Sydney

    Google Scholar 

  20. Gole MJ (1981) Ca-Fe-Si skarns containing babingtonite: first known occurrence in Australia. Can Mineral 19:269–277

    Google Scholar 

  21. Graser G, Markl G (2008) Ca-rich ilvaite–epidote–hydrogarnet endoskarns: a record of late-magmatic fluid influx into the persodic Ilímaussaq Complex, South Greenland. J Petrol 49(2):239–265

    Article  Google Scholar 

  22. Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca–Fe–Si–O–H. J Petrol 15(3):455–496

    Article  Google Scholar 

  23. Hirtopanu P, Andersen JC, Hartopanu I, Udubasa SS (2012) Ilvaite from the Cavnic deposit, Romania. Rom J Engl Stud 62–65

    Google Scholar 

  24. Kulikov IV, Boyarskaya RV (1989) Hydrosaline melts in inclusions in fluorite from the Tyrnyauz Deposit. Int Geol Rev 31(10):1039–1054

    Article  Google Scholar 

  25. Kwak TA (1983) The geology and geochemistry of the zoned, Sn-W-F-Be skarns at Mt. Lindsay, Tasmania, Australia. Econ Geol 78(7):1440–1465

    Article  Google Scholar 

  26. Larsen AO, Dahlgren S (2002) Ilvaite from the Oslo Graben, Norway. Neues Jahrbuch für Mineralogie-Monatshefte 2002(4):169–181

    Article  Google Scholar 

  27. Lehrmann B (2012) Polymetallic mineralisation in the Chillagoe district of north-east Queensland: insights into base metal rich intrusion-related gold systems. James Cook University

    Google Scholar 

  28. Logan MAV (2000) Mineralogy and geochemistry of the Gualilán skarn deposit in the Precordillera of western Argentina. Ore Geol Rev 17(1):113–138

    Article  Google Scholar 

  29. Maresch WV, Mottana A (1976) The pyroxmangite-rhodonite transformation for the MnSiO3 composition. Contrib Miner Petrol 55(1):69–79

    Article  Google Scholar 

  30. Meinert LD (1984) Mineralogy and petrology of iron skarns in western British Columbia, Canada. Econ Geol 79(5):869–882

    Article  Google Scholar 

  31. Meinert LD (1987) Skarn zonation and fluid evolution in the Groundhog mine, Central mining district, New Mexico. Econ Geol 82(3):523–545

    Article  Google Scholar 

  32. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19(4):145–162

    Google Scholar 

  33. Meinert LD (1993) Igneous petrogenesis and skarn deposits. Miner Depos Model 40:569–583

    Google Scholar 

  34. Misra KC (2000) Understanding mineral deposits. In: Understanding mineral deposits. Springer, pp 414–449

    Google Scholar 

  35. Momoi H (1974) Hydrothermal crystallization of MnSiO3 polymorphs. Mineral J 7(4):359–373

    Article  Google Scholar 

  36. Pesquera A, Velasco F (1986) An occurrence of ilvaite layers in the Cinco Villas metasomatic rocks, Western Pyrenees (Spain). Mineral Mag 50:653–656

    Article  Google Scholar 

  37. Petersen OV, Micheelsen HI, Leonardsen ES (1995) Bavenite, Ca4Be3Al[Si9O25(OH)3], from the Ilímaussaq alkaline complex, South Greenland. Neues Jahrbuch Für Mineralogie, Monatsheft

    Google Scholar 

  38. Plimer IR, Ashley PM (1978) Manganoan ilvaite from Broken Hill, NSW and Ban Ban, Queensland, Australia. Mineral Mag 42(321):85–88

    Article  Google Scholar 

  39. Rogulina LI, Sveshnikova OL (2008) The Nikolaevsky base-metal skarn deposit, Primorye, Russia. Geol Ore Depos 50(1):60–74

    Article  Google Scholar 

  40. Schiener A (1933) Lievrit von Seriphos. Z Für Krist-Cryst Mater 85(1):89–118

    Google Scholar 

  41. Tallarico FHB (2002) Occurrence of ilvaite in the Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Rev Bras Geociências 32(1):149–152

    Article  Google Scholar 

  42. Tang PZ, Wang YW, Wang JB, Long LL, Zhang HQ, Liao Z (2011) Finding and significance of ilvaite in the Cihai Iron Deposit, Xinjiang Autonomic Region, China. Acta Mineral Sin 1:003

    Google Scholar 

  43. Vassileva RD, Bonev IK, Zotov N (2001) High-Mn ilvaites from the skarn Pb-Zn deposits in the Central Rhodopes. In: Mineral deposits at the beginning of the 21st century. Balkema Publ., Lisse, pp 925–928

    Google Scholar 

  44. Verkaeren J, Bartholome P (1979) Petrology of the San Leone magnetite skarn deposit (SW Sardinia). Econ Geol 74(1):53–66

    Article  Google Scholar 

  45. Wang YS (1994) Analysis on special case of ilvaite enrichment in a certain iron deposit. Qinghai Geol 2:19–20

    Google Scholar 

  46. Yu M, Feng CY, Zhu YF, Mao JW, Zhao YM, Li DX (2016) Multistage amphiboles from the Galinge iron skarn deposit in Qiman Tagh, western China: evidence of igneous rocks replacement. Mineral Petrol 1–17

    Google Scholar 

  47. Zhao YM, Tan HJ, Xu ZN, Yuan RG, Bi C, Zheng RL, Li DX, Sun JH (1983) Makeng type calcic skarn iron deposit in the Southwest of Fujian province. Bulletin of the institute of mineral deposit Chinese academy of geological sciences (Album)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Formation and Breakdown of Ilvaite in the Large Galinge Skarn Fe Deposit, Western China: A Record of Multistage Retrograde Alteration. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_6

Download citation

Publish with us

Policies and ethics