Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 287 Accesses

Abstract

The Galinge iron deposit in the Qiman Tagh orogen, western part of the East Kunlun, Qinghai province, occurs as lens-shaped magnesian skarn, with magnetite and base-metal sulfide orebodies, and is hosted in dolomitic limestone. It experienced a complete skarn and retrograde stage under varying fluid compositions resulting in thermodynamically controlled formation of magnesian skarn and mineralogical zonation. A series of Mg- and Ca-rich solid solutions were generated in the skarn stage, including forsterite-fayalite, spinel-hercynite-gahnite and diopside-hedenbergite solid solutions. A thermodynamic model setting pressure of 0.6 kbar and X(CO2)=0.3 was set up to trace the skarn evolution in the skarn stage. Magnetite is stabilized at fluid conditions of ca. 460 – 520°C and Δlog fO2 (HM) = -5 – -11 in the skarn stage, and co-precipitates with diopside and forsterite. Magnetite precipitation always shows strong relations with diopside and forsterite rather than fayalite and hedenbergite, which deplete iron from the fluid. The retrograde alteration stage is characterized by the formation of tremolite, chondrodite, phlogopite, clinochlorite, epidote, prehnite, serpentine, magnesiomagnetite and ludwigite. In the thermodynamic model of the retrograde alteration evolution, setting P= 0.6 kbar and X(CO2)=0.01. Most of the tremolite + diopside + magnetite and clinohumite + diopside + magnetite assemblages are stable at 360 – 460°C and Δlog fO2 (HM) = -16 – -5. The phlogopite is formed at a temperature range of ca. 360 – 420°C and Δlog fO2 (HM) = -11 – -6, and serpentine are stabilized below 460°C in the late retrograde stage. Their stability in the system are intensively effected by the Al2O3 activity of the fluid. The paragenetic sequence of retrograde minerals is most likely a result of internally buffered increasing oxidation state as the precipitation of magnetite. This suggests that oxidizing process is most important for understanding the major causes of skarn iron deposit formation in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522

    Article  Google Scholar 

  2. Berman RG (2007) WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geol Surv Can Open File 5462:1–41

    Google Scholar 

  3. Clark DA (2014) Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: a review. Tectonophysics 624:46–65

    Article  Google Scholar 

  4. Coogan LA, Hain A, Stahl S et al (2005) Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochim Cosmochim Acta 69(14):3683–3694

    Article  Google Scholar 

  5. Dick JM (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9(1):1–17

    Article  Google Scholar 

  6. Dohmen R, Becker H, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1200 °C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34(6):389–407

    Article  Google Scholar 

  7. Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34(6):409–430

    Article  Google Scholar 

  8. Dunlop DJ, Özdemir Ö (2001) Rock magnetism: fundamentals and frontiers, vol 3. Cambridge University Press

    Google Scholar 

  9. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46(6):479–506

    Article  Google Scholar 

  10. Ferry JM (1996) Prograde and retrograde fluid flow during contact metamorphism of siliceous carbonate rocks from the Ballachulish aureole, Scotland. Contrib Mineral Petrol 124(3–4):235–254

    Article  Google Scholar 

  11. Ferry JM (2001) Calcite inclusions in forsterite. Am Mineral 86(7–8):773–779

    Article  Google Scholar 

  12. Ferry JM, Ushikubo T, Valley JW (2011) Formation of forsterite by silicification of dolomite during contact metamorphism. J Petrol 52:1619–1640

    Article  Google Scholar 

  13. Frost BR, Lindsley DH (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: Part II. Application. Am Mineral 77:1004

    Google Scholar 

  14. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Res 60(6):940–951

    Google Scholar 

  15. Guy B, Sheppard S, Fouillac AM et al (1988) Geochemical and isotope (H, C, O, S) studies of barren and tungsten-bearing skarns of the French Pyrenees. In: Mineral deposits within the European community. Springer, pp 53–75

    Google Scholar 

  16. Ito M, Ganguly J (2006) Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochim Cosmochim Acta 70(3):799–809

    Article  Google Scholar 

  17. Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput Geosci 29(5):673–678

    Article  Google Scholar 

  18. Liang XJ, Qiao L (1990) Characteristics of humite group minerals formed in metasomatic experimentation and physico-chemical conditions for their formation. Acta Petrol Mineral 4:005

    Google Scholar 

  19. Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz; Part I, Theory. Am Mineral 77(9–10):987–1003

    Google Scholar 

  20. Luce RW, Cygan GL, Hemley JJ et al (1985) Some mineral stability relations in the system CaO·MgO·SiO2·H2O·HCl. Geochim Cosmochim Acta 49(2):525–538

    Article  Google Scholar 

  21. Mazurov MP, Grishina SN, Istomin VE et al (2007) Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian platform. Geol Ore Depos 49(4):271–284

    Article  Google Scholar 

  22. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19(4):145–162

    Google Scholar 

  23. Meinert LD (1993) Igneous petrogenesis and skarn deposits. Mineral deposit modeling 40:569–583

    Google Scholar 

  24. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniv 299–336

    Google Scholar 

  25. Myers JT, Eugster HP (1983) The system Fe-Si-O: oxygen buffer calibrations to 1,500 K. Contrib Mineral Petrol 82(1):75–90

    Article  Google Scholar 

  26. Nadoll P, Angerer T, Mauk JL et al (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  27. Nadoll P, Mauk JL, Leveille RA et al (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Depos 50(4):493–515

    Article  Google Scholar 

  28. Nielsen RL, Forsythe LM, Gallahan WE et al (1994) Major-and trace-element magnetite-melt equilibria. Chem Geol 117(1):167–191

    Article  Google Scholar 

  29. Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68(20):4179–4188

    Article  Google Scholar 

  30. Rice JM (1980) Phase equilibria involving humite minerals in impure dolomitic limestones. Contrib Mineral Petrol 71(3):219–235

    Article  Google Scholar 

  31. Sack RO, Carmichael I, Rivers ML et al (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75(4):369–376

    Article  Google Scholar 

  32. Sack RO, Ghiorso MS (1991) An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contrib Mineral Petrol 106(4):474–505

    Article  Google Scholar 

  33. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America (Monograph), p 799

    Google Scholar 

  34. Suzuki K (1977) Local equilibrium during the contact metamorphism of siliceous dolomites in Kasuga-mura, Gifu-ken, Japan. Contrib Mineral Petrol 61(1):79–89

    Article  Google Scholar 

  35. Van Baalen MR (1993) Titanium mobility in metamorphic systems: a review. Chem Geol 110(1):233–249

    Article  Google Scholar 

  36. Vander AJ, André L (1991) Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources: evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy). Contrib Mineral Petrol 106(3):325–339

    Article  Google Scholar 

  37. Verlaguet A, Brunet F, Goffé B et al (2006) Experimental study and modeling of fluid reaction paths in the quartz–kyanite ± muscovite–water system at 0.7 GPa in the 350–550 °C range: implications for Al selective transfer during metamorphism. Geochim Cosmochim Acta 70(7):1772–1788

    Article  Google Scholar 

  38. Walther JV, Helgeson HC (1980) Description and interpretation of metasomatic phase relations at high pressures and temperatures: 1. equilibrium activities of ionic species in nonideal mixtures of CO2 and H2O. Am J Sci 280(7):459–485

    Article  Google Scholar 

  39. Yardley BW, MacKenzie WS, Guilford C (1990) Atlas of metamorphic rocks and their textures. Longman Scientific & Technical, Essex

    Google Scholar 

  40. Young ED, Morrison J (1992) Relations among net-transfer reaction progress, 18O–13C depletion, and fluid infiltration in a clinohumite-bearing marble. Contrib Mineral Petrol 111(3):391–408

    Article  Google Scholar 

  41. Yu M, Feng CY, Liu HC et al (2016) The Iron-Titanium Oxides in the Galinge Iron Polymetallic Skarn Deposit of Qinghai Province and Their Thermodynamic Significance. Acta Geosci Sin 37(2):204–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Thermodynamic Model for the Galinge Fe Skarn Deposit in Qinghai. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_3

Download citation

Publish with us

Policies and ethics