Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 307 Accesses

Abstract

The Galinge deposit can be roughly divided into three proximal to distal skarn zones Based on the mineral assemblages and their compositions; i.e. the magnesian skarn (Mg-SK), the calcic skarn (Ca-SK) and the manganese-calcium skarn (Mn-Ca-SK) zones. The Mg-SK is developed in the II ore domain, and is featured by the widespread occurrence of Mg-rich minerals, including forsterite, spinel, diopside, tremolite, serpentine, Mg-chlorite, chondrodite and phlogopite. The Ca-SK, occurring in the IV and V ore domains, is associated with the metamorphism of mafic volcanic rocks and marbles, and is characterized by garnet, pyroxene, tourmaline, axinite, magnesian-hastingsite, ferro-actinolite and epidote. The distal Mn-Ca-SK zone of the VI ore domain contains johannsenite, galena and sphalerite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson WW, Einaudi MT (1978) Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ Geol 73(7):1326–1365

    Article  Google Scholar 

  2. Deer WA, Howie RA, Zussman J (1986) Rock-forming minerals, Disilicates and ring silicates, v. 1B. Longman Scientific and Technical, London

    Google Scholar 

  3. Feng CY, Li DS, Wu ZS et al (2010) Major types, time-space distribution and metallogenesis of polymetallic deposits in the Qimantage metallogenic belt, eastern Kunlun area. Northwestern Geol 43(4):10–17

    Google Scholar 

  4. Franz G, Liebscher A (2004) Physical and chemical properties of the epidote minerals—an introduction. Rev Mineral Geochem 56(1):1–81

    Article  Google Scholar 

  5. Frietsch R (1984) Formation of Mg-bearing magnetite and serpentine in skarn iron ores in northern Sweden. GFF 106(3):219–230

    Google Scholar 

  6. Frost BR, Lindsley DH (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part II. Application. Am Mineral 77:1004

    Google Scholar 

  7. Gao YB, Li WY, Ma XG et al (2012) Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun. J Lanzhou Univ (Nat Sci) 48:36–47

    Google Scholar 

  8. Grew ES (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Rev Mineral Geochem 33(1):387–502

    Google Scholar 

  9. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Res 60(6):940–951

    Google Scholar 

  10. Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca–Fe–Si–O–H. J Petrol 15(3):455–496

    Article  Google Scholar 

  11. Hall DL, Cohen LH, Schiffman P (1988) Hydrothermal alteration associated with the iron hat iron skarn deposit, eastern Mojave Desert, San Bernardino County, California. Econ Geol 83(3):568–587

    Article  Google Scholar 

  12. Kurshakova LD, Tikhomirova VI (1974) Axinite and its paragenesis with hedenbergite. Int Geol Rev 16(12):1360–1369

    Article  Google Scholar 

  13. Layne GD, Longstaffe FJ, Spooner E (1991) The JC tin skarn deposit, southern Yukon Territory; II, A carbon, oxygen, hydrogen, and sulfur stable isotope study. Econ Geol 86(1):48–65

    Article  Google Scholar 

  14. Layne GD, Spooner E (1991) The JC tin skarn deposit, southern Yukon Territory; I, Geology, paragenesis, and fluid inclusion microthermometry. Econ Geol 86(1):29–47

    Article  Google Scholar 

  15. Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz; Part I, Theory. Am Mineral 77(9–10):987–1003

    Google Scholar 

  16. Liou JG (1973) Synthesis and stability relations of epidote, Ca2Al2FeSi3O12(OH). J Petrol 14(3):381–413

    Article  Google Scholar 

  17. Liou JG, Kim HS, Maruyama S (1983) Prehnite–epidote equilibria and their petrologic applications. J Petrol 24(4):321–342

    Article  Google Scholar 

  18. Liu CD, Mo XX, Luo ZH et al (2004) Mixing events between the crust-and mantle-derived magmas in Eastern Kunlun: evidence from zircon SHRIMP II chronology. Chin Sci Bull 49(8):828–834

    Google Scholar 

  19. Liu JN, Feng CY, Zhao YM et al (2013) Characteristics of intrusive rock, metasomatites, mineralization and alteration in Yemaquan skarn Fe-Zn polymetallic deposit, Qinghai Province. Miner Depos 1:008

    Google Scholar 

  20. Luo ZH, Ke S, Cao YQ et al (2002) Late Indosinian mantle-derived magmatism in the East Kunlun. Geol Bull China 21(6):292–297

    Google Scholar 

  21. Mao JW, Zhou ZH, Feng CY et al (2012) A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geol China 39(6):1437–1471

    Google Scholar 

  22. Meinert LD (1984) Mineralogy and petrology of iron skarns in western British Columbia, Canada. Econ Geol 79(5):869–882

    Article  Google Scholar 

  23. Meinert LD (1987) Skarn zonation and fluid evolution in the Groundhog mine, Central mining district, New Mexico. Econ Geol 82(3):523–545

    Article  Google Scholar 

  24. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19(4):145–162

    Google Scholar 

  25. Meinert LD (1993) Igneous petrogenesis and skarn deposits. Miner Depos Model 40:569–583

    Google Scholar 

  26. Meinert LD, Hefton KK, Mayes D et al (1997) Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ Geol 92(5):509–534

    Article  Google Scholar 

  27. O’Hanley DS, Robin O (1992) Characterization of multiple sepernization, Woodsreef, New South Wales. Can Mineral 30:1113–1126

    Google Scholar 

  28. Ozaki M (1972) Chemical composition and occurrence of axinite. Kumamoto J Sci Geol 9(2):1–34

    Google Scholar 

  29. Pertsev NN (1971) Parageneses of boron minerals in magnesian skarns. Nauka, Moscow

    Google Scholar 

  30. Pringle IJ, Kawachi Y (1980) Axinite mineral group in low-grade regionally metamorphosed rocks in southern New Zealand. Am Mineral 65(11–12):1119–1129

    Google Scholar 

  31. She HQ, Zhang DQ, Jing XY et al (2007) Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai. Geol China 2:013

    Google Scholar 

  32. Sonnet PM, Verkaeren J (1989) Scheelite-, malayaite-, and axinite-bearing skarns from El Hammam, central Morocco. Econ Geol 84(3):575–590

    Article  Google Scholar 

  33. Yao L (2015) Petrogenesis of the Triassic granitoids and skarn mineralization in the Qimantag area, Qinghai Province, and their geodynamic setting. China University of Geosciences (Beijing), Beijing, pp 1–172

    Google Scholar 

  34. Yu M, Feng CY, Bao GY et al (2013) Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province. Miner Depos 32(1):55–76

    Google Scholar 

  35. Yu M, Feng CY, Liu HC et al (2015) The significance of mineralization and geochemistry of the Cl-rich amphiboles from the Galinge skarn iron deposit in Qinghai Province. Acta Petrol Mineral 34(5):721–740

    Google Scholar 

  36. Yu M, Feng CY, Liu HC et al (2016) Mineralogy, element geochemistry and genesis of tourmaline from Galinge skarn deposit, Qinghai Province. Miner Depos 35(1):69–84

    Google Scholar 

  37. Yu M, Feng CY, Liu HC et al (2016) The Iron-Titanium Oxides in the Galinge Iron Polymetallic Skarn Deposit of Qinghai Province and their thermodynamic significance. Acta Geosci Sin 37(2):204–214

    Google Scholar 

  38. Yu M, Feng CY, Mao JW et al (2017) Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China: a fluid evolution perspective. Can Mineral 55(1):3–19

    Article  Google Scholar 

  39. Yu M, Feng CY, Zhao YM et al (2015) Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 239:45–59

    Article  Google Scholar 

  40. Yu M, Feng CY, Zhu YF et al (2016) Multistage amphiboles from the Galinge iron skarn deposit in Qiman Tagh, western China: evidence of igneous rocks replacement. Miner Petrol 1–17

    Google Scholar 

  41. Zhao YM, Dong YG, Li DX et al (2003) Geology, mineralogy, geochemistry, and zonation of the Bajiazi dolostone-hosted Zn–Pb–Ag skarn deposit, Liaoning Province, China. Ore Geol Rev 23(3):153–182

    Article  Google Scholar 

  42. Zhao YM, Feng CY, Li DX et al (2013) Metallogenic setting and mineralization-alteration characteristics of major skarn Fe-polymetallic deposits in Qimantag area, western Qinghai Province. Miner Depos 32(1):1–19

    Google Scholar 

  43. Zhao YM, Li DX (2004) Pb-Zn-Ag-bearing manganoan skarns of China. Acta Geol Sin (Engl Ed) 78(2):524–528

    Google Scholar 

  44. Zhao YM, Zhang YN, Bi CS et al (1998) The discovery of magnesioferrite from Au (Fe, Cu) magnesian skarn deposits and study of the magnesioferrite-magnesiomagnetite Series. Acta Geol Sin (Engl Ed) 72(4):382–391

    Google Scholar 

  45. Zhao YM, Zhang YN, Bi CS (1999) Geology of gold-bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions. Ore Geol Rev 14(3):227–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Skarn Zonation and Mineral Geochemistry of the Galinge Skarn Deposit. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_2

Download citation

Publish with us

Policies and ethics