Skip to main content

Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province

  • Chapter
  • First Online:
  • 299 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the Qiman Tagh metallogenic belt, Fe, Zn, Pb, Cu and Au skarns and epithermal Cu and Mo deposits are spatially and temporally associated with Triassic granitoid rocks including granodiorite, monzogranite and syenogranite which are only occurred in the South Qiman Tagh Terrane as a result of completely different geotectonic setting between the SQT and NQT. The plutonic associations related to mineralization have various ages between middle-Triassic (237 Ma–226 Ma) and late-Triassic (226 Ma–204 Ma). The abundant volatile components evolved from magma are responsible for the significant transportation of metals. The initial oxygen fugacity of magma will affect the different mineralization types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522

    Article  Google Scholar 

  2. Blundy J, Mavrogenes J, Tattitch B et al (2015) Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs. Nat Geosci 8(3):235–240

    Article  Google Scholar 

  3. Carmichael IS (1966) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14(1):36–64

    Article  Google Scholar 

  4. Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon Trachyandesite and other evolved magmas. J Petrol 28(5):781–801

    Article  Google Scholar 

  5. Cook NJ, Ciobanu CL (2001) Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting. Mineral Mag 65(3):351–372

    Article  Google Scholar 

  6. Fang J, Chen H, Zhang L et al (2015) Ore genesis of the Weibao lead-zinc district, Eastern Kunlun Orogen, China: constrains from ore geology, fluid inclusion and isotope geochemistry. Int J Earth Sci 1–25

    Google Scholar 

  7. Feng CY, Qu WJ, Zhang DQ et al (2009) Re–Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun Orogenic Belt, northwestern China. Ore Geol Rev 36(1):213–220

    Article  Google Scholar 

  8. Feng CY, Li DS, Wu ZS et al (2010) Major types, time-space distribution and metallogenesis of polymetallic deposits in the Qimantage metallogenic belt, eastern Kunlun area. Northwestern Geol 43(4):10–17

    Google Scholar 

  9. Feng CY, Wang XP, Shu XF et al (2011) Isotopic chronology of the Hutouya skarn lead-zinc polymetallic ore district in Qimatage area of Qinghai Province and its geological significance. J Jilin Univ (Earth Sci Ed) 41(6):1806–1818

    Google Scholar 

  10. Feng CY, Wang S, Li GC et al (2012) Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances. Acta Petrol Sin 28(2):665–678

    Google Scholar 

  11. Frietsch R (1984) Formation of Mg-bearing magnetite and serpentine in skarn iron ores in northern Sweden. Gff 106(3):219–230

    Google Scholar 

  12. Gao YB, Li WY, Li K et al (2013) Fluid inclusions, isotopic geochemistry and genesis of the Hutouya Zn-Pb deposit in Qimantag, Qinghai Province. 1631–1642

    Google Scholar 

  13. He SY, Li DS, Li LL et al (2009) Re-Os age of molybdenite from the Yazigou copper (molybdenum) mineralized area in eastern Kunlun of Qinghai Province, and its geological significance. Geotecton Metallog 33(2):236–242

    Google Scholar 

  14. Helgeson HC (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278:1–229

    Article  Google Scholar 

  15. Hemley JJ, Cygan GL, Fein JB et al (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations. Econ Geol 87(1):1–22

    Article  Google Scholar 

  16. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Article  Google Scholar 

  17. Landtwing MR, Pettke T, Halter WE et al (2005) Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235(1–2):229–243

    Article  Google Scholar 

  18. Lehmann B (1990) Metallogeny of tin, vol 32. Springer

    Google Scholar 

  19. Liou JG (1974) Stability relations of andradite-quartz in the system calcium-iron-silicon-oxygen-hydrogen. Am Mineral 59

    Google Scholar 

  20. Liu P, Yao L, Liu G et al (2014) Fluid Inclusions Characteristics of the Hutouya Lead-Zinc Polymetallic Deposit in Qimantage Area, Qinghai Province, China. Acta Geol Sin (Engl Ed) 88(s2):1126–1127

    Article  Google Scholar 

  21. Malaspina N, Poli S, Fumagalli P (2009) The oxidation state of metasomatized mantle wedge: insights from C–O–H-bearing garnet peridotite. J Petrol 50(8):1533–1552

    Article  Google Scholar 

  22. Myers JT, Eugster HP (1983) The system Fe-Si-O: oxygen buffer calibrations to 1,500 K. Contrib Mineral Petrol 82(1):75–90

    Article  Google Scholar 

  23. Qiu JT, Yu XQ, Santosh M et al (2013) Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner Depos 48(5):545–556

    Article  Google Scholar 

  24. Richards JP (2014) Discussion of Sun et al (2013): the link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 126(2):643–645

    Google Scholar 

  25. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66

    Article  Google Scholar 

  26. Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, USGPO; For sale by US Geological Survey, Information Services

    Google Scholar 

  27. Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade volcanic arc. J Petrol 50(1):61–91

    Article  Google Scholar 

  28. Sack RO, Carmichael I, Rivers ML et al (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75(4):369–376

    Article  Google Scholar 

  29. Sun W, Arculus RJ, Kamenetsky VS et al (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431(7011):975–978

    Article  Google Scholar 

  30. Sun WD, Liang HY, Ling MX et al (2013) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 103:263–275

    Article  Google Scholar 

  31. Taylor BE, Liou JG (1978) The low-temperature stability of andradite in C-O-H fluids. Am Mineral 63:378–393

    Google Scholar 

  32. Tian CS, Feng CY, Li JH et al (2013) 40Ar-39Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai Province and its geological implications. Miner Depos 32(1):169–176

    Google Scholar 

  33. Timón SM, Moro MC, Cembranos ML et al (2007) Contact metamorphism in the Los Santos W skarn (NW Spain). Miner Petrol 90(1–2):109–140

    Article  Google Scholar 

  34. Wang FC, Chen J, Xie ZY et al (2013) Geological features and Re-Os isotopic dating of the Lalingzaohuomolybdenum polymetallic deposit in East Kunlun. Geol China 40(4):1209–1217

    Google Scholar 

  35. Xiao Y, Feng CY, Liu JN et al (2013) LA-MC-ICP-MS zircon U-Pb dating and sulfur isotope characteristics of Kendekeke Fe-polymetallic deposit, Qinghai Province. Miner Depos 32(1):177–186

    Google Scholar 

  36. Yu M, Feng CY, Zhao YM et al (2014) Fluid inclusion geochemistry in the Kaerqueka copper polymetallic deposit, Qinghai Province and its genetic significances. Acta Geol Sin 88(5):903–917

    Google Scholar 

  37. Yu M, Feng CY, Liu HC et al (2015) 40Ar-39Ar geochronology of the Galinge large skarn iron deposit in Qinghai province and geological significance. Acta Geol Sin 89(3):510–521

    Google Scholar 

  38. Yu M, Feng CY, Zhu YF et al (2016) Multistage amphiboles from the Galinge iron skarn deposit in Qiman Tagh, western China: evidence of igneous rocks replacement. Miner Petrol 1–17

    Google Scholar 

  39. Yu M, Feng CY, Mao JW et al (2017) Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China: a fluid evolution perspective. Can Mineral 55(1):3–19

    Article  Google Scholar 

  40. Zhang AK, Liu GL, Feng CY et al (2013) Geochemical characteristics and ore-controlling factors of Hutouya polymetallic deposit, Qinghai Province. Miner Depos 32(1):94–108

    Google Scholar 

  41. Zhao CS, Yang FQ, Dai JZ (2006) Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance. Miner Depos S1

    Google Scholar 

  42. Zhao YM, Zhang YN, Bi CS et al (1998) The discovery of magnesioferrite from Au (Fe, Cu) magnesian skarn deposits and study of the magnesioferrite-magnesiomagnetite Series. Acta Geol Sin (Engl Ed) 72(4):382–391

    Google Scholar 

  43. Zhao SF, WU ZS, Zhang AK et al (2014) Geological Features, Deposit Genesis and Prospecting Potential of Changshan Molybdenum Deposit in Qimantage, Qinghai Province. Northwestern Geol 47(1):179–187

    Google Scholar 

  44. Zhou JH, Feng CY, Wang H et al (2014) Re-Os dating of molybdenite from the Yugouzi Fe-Cu (Mo) deposit in Qimantage, eastern Kunlun and its geological implications. Geol Explor 50(1):0001–0007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M. (2019). Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. In: Metallogenic Mechanism of the Galinge Polymetallic Iron Skarn Deposit, Qiman Tagh Mountains, Qinghai Province. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7907-8_10

Download citation

Publish with us

Policies and ethics