The Search for Signatures of Life and Habitability on Planets and Moons of Our Solar System

  • Oliver Funke
  • Gerda Horneck


In the endeavor to search for signs of extraterrestrial life within the Solar System our neighbor planet Mars and the moons Europa and Enceladus of the outer planets are the most promising candidates. For this purpose, the German Aerospace Center DLR is developing the following devices for in situ exploration: VaMEx (Valles Marineris Explorer), a network of small rovers and walking/crawling and flying robots, to explore the deep canyon of Mars; and the ice-moles EurEx (Europa Explorer) and EnEx (Enceladus Explorer) for the exploration of the subglacial oceans of Europa and Enceladus. The realization of those projects (e.g., VaMEx mission by 2035, and EurEx mission not before 2050) requires their involvement in a global exploration program, comparable to the program of the Global Exploration Roadmap, which has been developed by 14 space agencies with the final goal of bringing human explorers to Mars.


  1. 1.
    Carr, M. H., Belton, M. J. S., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., et al. (1998). Evidence for a subsurface ocean on Europa. Nature, 391, 363–365.CrossRefGoogle Scholar
  2. 2.
    Cockell, C. S., Bush, T., Bryce, C., Direito, S., Fox-Powell, M., Harrison, J. P., et al. (2016). Habitability: A review. Astrobiology, 16, 89–117.CrossRefGoogle Scholar
  3. 3.
    Cockell, C. S., & Westall, F. (2004). A postulate to assess ‘habitability’. International Journal of Astrobiology, 3, 157–163.CrossRefGoogle Scholar
  4. 4.
    Collinson, G. A., Frahm, R. A., Glocer, A., Coates, A. J., Grebowsky, J. M., & Barabash, S. (2016). The electric wind of Venus: A global and persistent ‘polar wind’-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 43, 5926–5934.CrossRefGoogle Scholar
  5. 5.
    Dachwald, B., Xu, C., Feldmann, M., & Plescher, E. (2011). Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier. Geophysical Research Abstracts, 13, 4943.Google Scholar
  6. 6.
    De Duve, C. (2011). Life as a cosmic imperative? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 620–623.CrossRefGoogle Scholar
  7. 7.
    Dohm, J. M., Williams, J. P., Anderson, R. C., Ruiz, J., McGuire, P. C., Komatsu, G., et al. (2009). New evidence for a magmatic influence on the origin of Valles Marineris, Mars. Journal of Volcanology and Geothermal Research, 185, 12–27.CrossRefGoogle Scholar
  8. 8.
    Edwards, C. S., & Piqueux, S. (2016). The water content of recurring slope lineae on Mars. Geophysical Research Letters, 43, 8912–8919.CrossRefGoogle Scholar
  9. 9.
    Falconí, G. P., & Holzapfel, F. (2013). Adaptive fault tolerant control allocation for a hexacopter system. In Proceedings of the American Control Conference, 2016 (pp. 6760–6766).Google Scholar
  10. 10.
    Falconí, G. P., Schatz, S. P., & Holzapfel, F. (2016). Fault tolerant control of a hexarotor using a command governor augmentation. In 24th Mediterranean Conference on Control and Automation (MED), 2016 (pp. 182–187).Google Scholar
  11. 11.
    Gourronc, M., Bourgeois, O., Mège, D., Pochat, S., Bultel, B., Massé, M., et al. (2014). One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology, 204, 235–255.CrossRefGoogle Scholar
  12. 12.
    Hand, K. (2017). The search for life in Oceans beyond Earth, Space science week public lecture. Washington D.C., USA: National Academy of Sciences.Google Scholar
  13. 13.
    Horneck, G. (2000). The microbial world and the case for Mars. Planetary and Space Science, 48, 1053–1063.CrossRefGoogle Scholar
  14. 14.
    Horneck, G., Walter, N., Westall, F., Grenfell, J. L., Martin, W. F., Gomez, F., et al. (2016). AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3), 201–243. (Special Issue).CrossRefGoogle Scholar
  15. 15.
    Horvath, J. C., Carsey, F. D., Cutts, J. A., Jones, J. A., Johnson, E. D., Landry, B. M., … & Jeng, T. W. (1997, July). Searching for ice and ocean biogenic activity on Europa and Earth. In Optical Science, Engineering and Instrumentation’97 (pp. 490–500). International Society for Optics and Photonics.Google Scholar
  16. 16.
    Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108–128.CrossRefGoogle Scholar
  17. 17.
    Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780.CrossRefGoogle Scholar
  18. 18.
    Kminek, G., & Rummel, J. (2015). COSPAR’s Planetary Protection Policy. Space Research Today, 193, 1–14. (COSPAR’s information bulletin).Google Scholar
  19. 19.
    Konstantinidis, K., Martinez, C. L. F., Dachwald, B., Ohndorf, A., Dykta, P., Bowitz, P., … & Förstner, R. (2015). A lander mission to probe subglacial water on Saturn’s moon Enceladus for life. Acta astronautica, 106, 63–89.CrossRefGoogle Scholar
  20. 20.
    Kowalski, J., Linder, P., Zierke, S., von Wulfen, B., Clemens, J., Konstantinidis, K., et al. (2016). Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Regions Science and Technology, 123, 53–70.CrossRefGoogle Scholar
  21. 21.
    Kulikov, Yu N, Lammer, H., Lichtenegger, H. I. M., Terada, N., Ribas, I., Kolb, C., et al. (2006). Atmospheric and water loss from early Venus. Planetary and Space Science, 54, 1425–1444.CrossRefGoogle Scholar
  22. 22.
    Lammer, H., Selsis, F., Penz, T., Amerstorfer, U. V., Lichtenegger, H. I. M., Kolb, C., et al. (2005). Atmospheric evolution and history of water on Mars. In T. Tokano (Ed.), Water on Mars and Life (pp. 25–44)., Advances in astrobiology and biogeophysics Berlin: Springer.Google Scholar
  23. 23.
    Lammer, H., Bredehöft, J. H., Coustenis, A., Khodachenko, M. L., Kaltenegger, L., Grasset, O., et al. (2009). What makes a planet habitable? The Astronomy and Astrophysics Review, 17, 181–249.CrossRefGoogle Scholar
  24. 24.
    Leimena, W., Artmann, G. M., Dachwald, B., Artmann, A., Goßmann, M., & Digel, I. (2010). Feasibility of an in-situ microbial decontamination of an ice-melting probe. Eurasian Chemico-Technological Journal, 12(2), 145–150.CrossRefGoogle Scholar
  25. 25.
    Lemke, M. K., Funke, O., Klein, V., Montenegro, S., Schilling, K., & Buehler, C., et al. (2017). German large national mission candidate SKAD—a satellite-based cooperative autonomous drone swarm for exploration. In Submitted to 68th International Astronautical Congress 2017.Google Scholar
  26. 26.
    Leone, G. (2014). A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. Journal of Volcanology and Geothermal Research, 277, 1–8.CrossRefGoogle Scholar
  27. 27.
    Léveillé, R. J., & Datta, S. (2009). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planetary and Space Science, 58(2010), 592–598.Google Scholar
  28. 28.
    Lunine, J. I. (2017). Ocean worlds exploration. Acta Astronautica, 131, 123–130.CrossRefGoogle Scholar
  29. 29.
    Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., & Genzer, M. (2015). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8(5), 357–361.CrossRefGoogle Scholar
  30. 30.
    McEwen, A. S., Ojha, L., Dundas, C. M., Mattson, S. S., Byrne, S., Wray, J. J., et al. (2011). Seasonal Flows on Warm Martian Slopes. Science, 333, 740–743.CrossRefGoogle Scholar
  31. 31.
    McEwan, A, Chojnacki, M., Dundas, C., Ojha, L., Masse, M., & Schaefer, E., et al. (2015). Recurring slope lineae on Mars: Atmospheric Origin? EPSC Abstracts, 10, EPSC2015-786-1.Google Scholar
  32. 32.
    McKay, C. P., Anbar, A. D., Porco, C., & Tsou, P. (2014). Follow the plume: The habitability of enceladus. Astrobiology, 14, 352–355.CrossRefGoogle Scholar
  33. 33.
    Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103(1–2), 5–47.CrossRefGoogle Scholar
  34. 34.
    Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal Geophysical Research, 105(E5), 11969–11979.CrossRefGoogle Scholar
  35. 35.
    Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. S., Wray, J. J., Hanley, J., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience. Scholar
  36. 36.
    Okubo, C. H. (2016). Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars. Icarus, 269, 23–37.CrossRefGoogle Scholar
  37. 37.
    Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., et al. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604–607.CrossRefGoogle Scholar
  38. 38.
    Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., et al. (2014). Transient water vapor at Europa’s south pole. Science, 343, 171–174.CrossRefGoogle Scholar
  39. 39.
    Sand, S., Zhang, S., Mühlegg, M., Falconi, G., Zhu, C., & Krüger, T., et al. (2013). Swarm exploration and navigation on Mars. In 2013 International Conference on Localization and GNSS (ICL-GNSS).Google Scholar
  40. 40.
    Sotin, C., & Prieur, D. (2007). Jupiter’s Moon Europa: Geology and habitability. In G. Horneck & P. Rettberg (Eds.), Complete course in astrobiology (pp. 253–271). Germany: Wiley-VCH, Weinhiem.CrossRefGoogle Scholar
  41. 41.
    Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiss, M., et al. (2006). Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418.CrossRefGoogle Scholar
  42. 42.
    Stillman, D. E., Michaels, T. I., Grimm, R. E., & Hanley, J. (2016). Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer. Icarus, 265, 125–138.CrossRefGoogle Scholar
  43. 43.
    Tokano, T. (Ed.). (2005). Water on Mars and Life., Advances in astrobiology and biogeophysics Berlin: Springer.Google Scholar
  44. 44.
    Ulamec, S., Biele, J., Funke, O., & Engelhardt, M. (2006). Access to glacial and subglacial environments in the Solar System by melting probe technology. Reviews in Environmental Science and Bio/Technology, 6(2006), 71–94.Google Scholar
  45. 45.
    Vance, S., Harnmeijer, J., Kimura, J., Hussmann, H., deMartin, B., & Brown, J. M. (2007). Hydrothermal systems in small Ocean planets. Astrobiology, 7(6), 987–1005.CrossRefGoogle Scholar
  46. 46.
    Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and 40 A in the plume. Nature, 460, 487–490.CrossRefGoogle Scholar
  47. 47.
    Westall, F. (2011). Early life. In: M. Gargaud, P. López-Garcia, & H. Martin (Eds), Origins and Evolution of Life: An astrobiology perspective (pp. 391–413). Cambridge University Press.Google Scholar
  48. 48.
    Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., et al. (2015). Biosignatures on Mars: What, where, and how? implications for the search for martian life. Astrobiology, 15(11), 998–1029.CrossRefGoogle Scholar
  49. 49.
    Wirtz, M., & Hildebrand, M. (2016). IceShuttle Teredo: An Ice-Penetrating Robotic System to Transport an Exploration AUV into the Ocean of Jupiter’s Moon Europa. In 67th International Astronautical Congress (IAC), Guadalajara, Mexico, September 26–30, 2016.Google Scholar
  50. 50.
    Zimmerman, W., Bryant, S., Zitzelberger, J., & Nesmith, B. (2001, February). A radioisotope powered cryobot for penetrating the Europan ice shell. In M. S. El-Genk & M. J. Bragg (Eds.), AIP Conference Proceedings (Vol. 552, No. 1, pp. 707–715). AIP.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.German Aerospace Center DLRSpace AdministrationNavigation, BonnGermany
  2. 2.German Aerospace Center DLRInstitute of Aerospace MedicineCologneGermany

Personalised recommendations