Advertisement

Encapsulation of Stem Cells in Research and Therapy

  • Isgard S. Hueck
  • Jane Frimodig
  • Pamela Itkin-Ansari
  • David A. Gough
Chapter

Abstract

As stem cell therapies advance, rethinking of medical device engineering provides promise for treatment options in clinical applications. In the past decades, cell transplantation has been an approach for many regenerative therapies. To date, however, limited human donor supply has hampered the transplantation of human organs and mature donor tissues for an increasing number of patients worldwide, particularly those with liver and pancreatic diseases. This chapter explores the use of stem cells as an alternative to implantation of mature cells and discusses the development of stem cell therapies that may promote organ regeneration, or delivery of endocrine products in vivo, and their challenges for the use in clinical applications. Aspects of stem cell differentiation strategies, microenvironmental factors, and cellular immunity are addressed. A second limitation to cellular transplantation has been the need for chronic immunosuppression. As an alternative to clinical immunosuppression, designs and materials for cellular encapsulation, intended to avoid rejection by the immune system and to control growth of cellular implants, have been developed. Liver disease is chosen to show examples of stem cell micro-encapsulation approaches in research and therapy. Secondly, a stem cell macro-encapsulation device is used as an example for a bio-artificial pancreas as a possible therapeutic approach for diabetes mellitus. The focus of this chapter is on the synergy between stem cell therapy and medical device engineering as a multi-disciplinary approach in the field of bioengineering, which may eventually provide new options for treatment of human disease.

Keywords

Stem cell therapy Embryonic stem cell Induced pluripotent stem cell Progenitor cell Encapsulation Cellular implantation Diabetes mellitus Chronic liver disease Regenerative medicine Artificial pancreas Biomaterial Immunoisolation Neovascularization Tissue engineering 

Abbreviations

ECM

Extra Cellular Matrix

hESC

Human Embryonic Stem Cell

iPSC

Induced Pluripotent Stem Cell

LPC

Liver Progenitor Cell

MSC

Mesenchymal Stem Cell

PPC

Pancreatic Progenitor Cell

Notes

Acknowledgements

We thank Dr. Kevin D’Amour for providing images from pre-clinical and clinical work at ViaCyte, San Diego, USA.

References

  1. 1.
    Everhart, J. E., & Ruhl, C. E. (2009). Burden of digestive diseases in the United States part III: Liver, biliary tract, and pancreas. Gastroenterology, 136(4), 1134–1144.CrossRefGoogle Scholar
  2. 2.
    Yadav, D., & Lowenfels, A. B. (2013). The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology, 144(6), 1252–1261.CrossRefGoogle Scholar
  3. 3.
    Congress, I. L. (2016). Fast facts about liver disease—The international Liver Congress 2016, April 13–17. The Home of Hepatology. http://2016.ilc-congress.eu/wp-content/uploads/2016/04/Liver-disease-backgrounder.pdf.
  4. 4.
    Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D. C., & Roudot-Thoraval, F. (2013). The burden of liver disease in Europe: A review of available epidemiological data. Journal of hepatology, 58(3), 593–608.CrossRefGoogle Scholar
  5. 5.
    Lévy, P., Domínguez-Muñoz, E., Imrie, C., Löhr, M., & Maisonneuve, P. (2014) Epidemiology of chronic pancreatitis: burden of the disease and consequences. United European Gastroenterology Journal, 2(5), 345–354.CrossRefGoogle Scholar
  6. 6.
    Peery, A. F., Crockett, S. D., Barritt, A. S., Dellon, E. S., Eluri, S., Gangarosa, L. M., … Schmidt, M. (2015). Burden of Gastrointestinal, Liver, and Pancreatic Diseases in the United States. Gastroenterology, 149(7), 1731–1741 e3.Google Scholar
  7. 7.
    Zaret, K. S. (2008). Genetic programming of liver and pancreas progenitors: Lessons for stem-cell differentiation. Nature Reviews Genetics, 9(5), 329–340.CrossRefGoogle Scholar
  8. 8.
    Rous, P., & Murphy, J. B. (1912). The histological signs of resistance to a transmissible sarcoma of the fowl. Journal of Experimental Medicine, 15(3), 270–286.CrossRefGoogle Scholar
  9. 9.
    Bisceglie, V. (1933). Uber die antineoplastische Immunitat: (I) Heterologe Einpflanzung von Tumoren in Huhnerembryonen. Zeitschrift für Krebsforschung, 40, 122–140.CrossRefGoogle Scholar
  10. 10.
    Bisceglie, V. (1933). Uber die antineoplastische Immunität; (II) Die Wachstumfahigkeit von heterologen Geschwulsten in erwachsenen Tieren nach Einpflanzung in Kollodiumsackchen. Zeitschrift für Krebsforschung, 40, 141–158.CrossRefGoogle Scholar
  11. 11.
    Chang, T. M. (1964). Semipermeable microcapsules. Science, 146(3643), 524–525.CrossRefGoogle Scholar
  12. 12.
    Federlin, K., & Raptis, S. (2001). Ernst F. Pfeiffer: His impact on diabetes research and treatment over the last 45 years. Experimental and Clinical Endocrinology & Diabetes, 109(2), S83–S85.CrossRefGoogle Scholar
  13. 13.
    Bowen, K. M., Andrus, L., & Lafferty, K. J. (1980). Successful allotransplantation of mouse pancreatic islets to nonimmunosuppressed recipients. Diabetes, 29(1), 98–104.CrossRefGoogle Scholar
  14. 14.
    Lafferty, K. J., Andrus, L., & Prowse, S. J. (1980). Role of lymphokine and antigen in the control of specific T cell responses. Immunological Reviews, 51, 279–314.CrossRefGoogle Scholar
  15. 15.
    Chick, W. L., Perna, J. J., Lauris, V., Low, D., Galletti, P. M., Panol, G., et al. (1977). Artificial pancreas using living beta cells: Effects on glucose homeostasis in diabetic rats. Science, 197(4305), 4780–4782.CrossRefGoogle Scholar
  16. 16.
    Lim, F., & Sun, A. M. (1980). Microencapsulated islets as bioartificial endocrine pancreas. Science, 210(4472), 908–910.CrossRefGoogle Scholar
  17. 17.
    Cima, L. G., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D., & Langer, R. (1991). Tissue engineering by cell transplantation using degradable polymer substrates. Journal of Biomechanical Engineering, 113(2), 143–151.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Krishnan, R., Alexander, M., Robles, L., Foster III, C. E., & Lakey, J. R. (2014). Islet and stem cell encapsulation for clinical transplantation. The Review of Diabetic Studies, 11(1), 84–101.CrossRefGoogle Scholar
  20. 20.
    Soon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T. I. A. N. L. I., … Mendez, R. (1994). Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet, 343(8903), 950–951.Google Scholar
  21. 21.
    Calafiore, R., Basta, G., Luca, G., Lemmi, A., Montanucci, M. P., Calabrese, G., … Brunetti, P. (2006). Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care, 29(1), 137–138.CrossRefGoogle Scholar
  22. 22.
    Löhr, M., Bago, Z. T., Bergmeister, H., Ceijna, M., Freund, M., Gelbmann, W., … Henninger, W. (1999). Cell therapy using microencapsulated 293 cells transfected with a gene construct expressing CYP2B1, an ifosfamide converting enzyme, instilled intra-arterially in patients with advanced-stage pancreatic carcinoma: a phase I/II study. Journal of Molecular Medicine, 77(4), 393–398. Google Scholar
  23. 23.
    Löhr, M., Hoffmeyer, A., Kröger, J. C., Freund, M., Hain, J., Holle, A., … Nizze, H. (2001). Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet, 357(9268), 1591–1592.CrossRefGoogle Scholar
  24. 24.
    Löhr, M., Kroger, J. C., Hoffmeyer, A., Freund, M., Hain, J., Holle, A., … Saller, R. (2003). Safety, feasibility and clinical benefit of localized chemotherapy using microencapsulated cells for inoperable pancreatic carcinoma in a phase I/II trial. Cancer Therapy, 1, 121–131.Google Scholar
  25. 25.
    Pelegrin, M., Marin, M., Noel, D., Del Rio, M., Saller, R., Stange, J., … Piechaczyk, M. (1998). Systemic long-term delivery of antibodies in immunocompetent animals using cellulose sulphate capsules containing antibody-producing cells. Gene Therapy, 5(6), 828–834.CrossRefGoogle Scholar
  26. 26.
    Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 294(5547), 1684–1688.CrossRefGoogle Scholar
  27. 27.
    Kobayashi, T., Aomatsu, Y., Iwata, H., Kin, T., Kanehiro, H., Hisanaga, M., … Nakajima, Y. (2003). Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation, 75(5), 619–625.CrossRefGoogle Scholar
  28. 28.
    Haque, T., Chen, H., Ouyang, W., Martoni, C., Lawuyi, B., Urbanska, A. M., & Prakash, S. (2005). In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnology Letters, 27(5), 317–322.CrossRefGoogle Scholar
  29. 29.
    Young, S., Wong, M., Tabata, Y., & Mikos, A. G. (2005). Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release, 109(1–3), 256–274.CrossRefGoogle Scholar
  30. 30.
    Dong, H., Fahmy, T. M., Metcalfe, S. M., Morton, S. L., Dong, X., Inverardi, L., … Wang, H. (2012). Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLoS One, 7(12), e50265.CrossRefGoogle Scholar
  31. 31.
    Kim, A. R., Hwang, J. H., Kim, H. M., Kim, H. N., Song, J. E., Yang, Y. I., … Khang, G. (2013). Reduction of inflammatory reaction in the use of purified alginate microcapsules. Journal of Biomaterials Science, Polymer Edition, 24(9), 1084–1098.CrossRefGoogle Scholar
  32. 32.
    Hueck, I. S., Haas, M., Finones, R., Frimodig, J., & Gough, D. A. (2011). The potential of selectively cultured adult stem cells re-implanted in tissues. In Artmann (Ed.), Stem cell engineering: Principles and applications (pp. 79–117). Berlin: Springer.Google Scholar
  33. 33.
    Seale, N. M., & Varghese, S. (2016). Biomaterials for pluripotent stem cell engineering: from fate determination to vascularization. Journal of Materials Chemistry B, 4(20), 3454–3463.CrossRefGoogle Scholar
  34. 34.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefGoogle Scholar
  35. 35.
    Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., … Edel, M. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.CrossRefGoogle Scholar
  36. 36.
    Loh, Y. H., Hartung, O., Li, H., Guo, C., Sahalie, J. M., Manos, P. D., … Lensch, M. W. (2010). Reprogramming of T cells from human peripheral blood. Cell Stem Cell, 7(1), 15–19.CrossRefGoogle Scholar
  37. 37.
    Zhou, T., Benda, C., Dunzinger, S., Huang, Y., Ho, J. C., Yang, J., … Bao, X. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature Protocols, 7(12), 2080–2089.CrossRefGoogle Scholar
  38. 38.
    Selvaraj, V., Plane, J. M., Williams, A. J., & Deng, W. (2010). Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends in Biotechnology, 28(4), 214–223.CrossRefGoogle Scholar
  39. 39.
    Liu, H., Ye, Z., Kim, Y., Sharkis, S., & Jang, Y. Y. (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51(5), 1810–1819.CrossRefGoogle Scholar
  40. 40.
    Sullivan, G. J., Hay, D. C., Park, I. H., Fletcher, J., Hannoun, Z., Payne, C. M., … Wang, G. (2010). Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 51(1), 329–335.CrossRefGoogle Scholar
  41. 41.
    Wu, S., Xu, H., Chen, B., Wen, Y., Ikusika, O. M., Ocker, A., … Ildstad, S. T. (2011). Sensitized recipients exhibit accelerated but not hyperacute rejection of vascularized composite tissue allografts. Transplantation, 92(6), 627–633.CrossRefGoogle Scholar
  42. 42.
    Yamanaka, S. (2012). Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 10(6), 678–684.CrossRefGoogle Scholar
  43. 43.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., … Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRefGoogle Scholar
  44. 44.
    Kadam, S., Muthyala, S., Nair, P., & Bhonde, R. (2010). Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. The Review of Diabetic Studies, 7(2), 168–182.CrossRefGoogle Scholar
  45. 45.
    Ngoc, P. K., Van Phuc, P., Nhung, T. H., Thuy, D. T., & Nguyet, N. T. M. (2011). Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Human Cell, 24(2), 86–95.CrossRefGoogle Scholar
  46. 46.
    Goren, A., Dahan, N., Goren, E., Baruch, L., & Machluf, M. (2010). Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J, 24(1), 22–31.CrossRefGoogle Scholar
  47. 47.
    Wilson, J. L., & McDevitt, T. C. (2013). Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology and Bioengineering, 110(3), 667–682.CrossRefGoogle Scholar
  48. 48.
    Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5(1), 121–143.CrossRefGoogle Scholar
  49. 49.
    Orive, G., Gascón, A. R., Hernández, R. M., Igartua, M., & Pedraz, J. L. (2003). Cell microencapsulation technology for biomedical purposes: Novel insights and challenges. Trends in Pharmacological Sciences, 24(5), 207–210.CrossRefGoogle Scholar
  50. 50.
    Hunkeler, D. (2001). Allo transplants xeno: As bioartificial organs move to the clinic. Introduction. Annals of the New York Academy of Sciences, 944, 1–6.CrossRefGoogle Scholar
  51. 51.
    Kang, H. K., Wang, S., Dangi, A., Zhang, X., Singh, A., Zhang, L., … Thorp, E. B. (2017). Differential role of B cells and IL-17 versus IFN-gamma during early and late rejection of pig islet xenografts in mice. Transplantation.Google Scholar
  52. 52.
    Dufrane, D., & Gianello, P. (2012). Pig islet for xenotransplantation in human: Structural and physiological compatibility for human clinical application. Transplantation Reviews, 26(3), 183–188.CrossRefGoogle Scholar
  53. 53.
    Dufrane, D., & Gianello, P. (2012). Macro- or microencapsulation of pig islets to cure type 1 diabetes. World Journal of Gastroenterology, 18(47), 6885–6893.CrossRefGoogle Scholar
  54. 54.
    Zhu, H. T., Lu, L., Liu, X. Y., Yu, L., Lyu, Y., & Wang, B. (2015). Treatment of diabetes with encapsulated pig islets: An update on current developments. Journal of Zhejiang University-Science B, 16(5), 329–343.CrossRefGoogle Scholar
  55. 55.
    Gunzburg, W. H., & Salmons, B. (2000). Xenotransplantation: Is the risk of viral infection as great as we thought? Molecular Medicine Today, 6(5), 199–208.CrossRefGoogle Scholar
  56. 56.
    Bowie, K. M., & Chang, P. L. (1998). Development of engineered cells for implantation in gene therapy. Advanced Drug Delivery Reviews, 33(1–2), 31–43.Google Scholar
  57. 57.
    Uludag, H., De Vos, P., & Tresco, P. A. (2000). Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42(1–2), 29–64.CrossRefGoogle Scholar
  58. 58.
    Sakai, S., Mu, C., Kawabata, K., Hashimoto, I., & Kawakami, K. (2006). Biocompatibility of subsieve-size capsules versus conventional-size microcapsules. Journal of Biomedical Materials Research Part A, 78(2), 394–398.CrossRefGoogle Scholar
  59. 59.
    Fang, S., & MAO, L. (2007). Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro. Acta Pharmacologica Sinica, 28(12), 1924–1930.CrossRefGoogle Scholar
  60. 60.
    Orive, G., Hernández, R. M., Gascón, A. R., Calafiore, R., Chang, T. M. S., de Vos, P., … Pedraz, J. L. (2004). History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 22(2), 87–92.CrossRefGoogle Scholar
  61. 61.
    Rabanel, J. M., Banquy, X., Zouaoui, H., Mokhtar, M., & Hildgen, P. (2009). Progress technology in microencapsulation methods for cell therapy. Biotechnology Progress, 25(4), 946–963.CrossRefGoogle Scholar
  62. 62.
    Kidd, K. R., Nagle, R. B., & Williams, S. K. (2002). Angiogenesis and neovascularization associated with extracellular matrix-modified porous implants. Journal of Biomedical Materials Research, 59(2), 366–377.CrossRefGoogle Scholar
  63. 63.
    Vasanthan, K. S., Subramanian, A., Krishnan, U. M., & Sethuraman, S. (2012). Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnology Advances, 30(3), 742–752.CrossRefGoogle Scholar
  64. 64.
    Maguire, T., Davidovich, A. E., Wallenstein, E. J., Novik, E., Sharma, N., Pedersen, H., … Yarmush, M. (2007). Control of hepatic differentiation via cellular aggregation in an alginate microenvironment. Biotechnology and Bioengineering, 98(3), 631–644.CrossRefGoogle Scholar
  65. 65.
    Shi, X. L., Zhang, Y., Gu, J. Y., & Ding, Y. T. (2009). Coencapsulation of hepatocytes with bone marrow mesenchymal stem cells improves hepatocyte-specific functions. Transplantation, 88(10), 1178–1185.CrossRefGoogle Scholar
  66. 66.
    Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 1840(8), 2506–2519.CrossRefGoogle Scholar
  67. 67.
    Vishwakarma, A., & Karp, J. M. (Eds.) (2017). Biology and engineering of stem cell niches. London: Elsevier Academic Press.Google Scholar
  68. 68.
    Jhala, D., & Vasita, R. (2015). A review on extracellular matrix mimicking strategies for an artificial stem cell niche. Polymer Reviews, 55(4), 561–595.CrossRefGoogle Scholar
  69. 69.
    Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441(7097), 1075–1079.CrossRefGoogle Scholar
  70. 70.
    Stoker, M., & Gherardi, E. (1991). Regulation of cell movement: The motogenic cytokines. Biochimica et Biophysica Acta, 1072(1), 81–102.Google Scholar
  71. 71.
    Welf, E. S., & Haugh, J. M. (2011). Signaling pathways that control cell migration: Models and analysis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(2), 231–240.Google Scholar
  72. 72.
    Watt, F. M., & Huck, W. T. (2013). Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 14(8), 467–473.CrossRefGoogle Scholar
  73. 73.
    Rowley, J. A., & Mooney, D. J. (2002). Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research, 60(2), 217–223.CrossRefGoogle Scholar
  74. 74.
    Benoit, D. S., Schwartz, M. P., Durney, A. R., & Anseth, K. S. (2008). Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Materials, 7(10), 816–823.CrossRefGoogle Scholar
  75. 75.
    Chokkalingam, V., Tel, J., Wimmers, F., Liu, X., Semenov, S., Thiele, J., … Huck, W. T. (2013). Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip, 13(24), 4740–4744.CrossRefGoogle Scholar
  76. 76.
    Severian Dumitriu, V. P. (2013) Medical and pharmaceutical applications, Vol. 2, 3rd ed. ISBN 978-1-4200-9468-8.Google Scholar
  77. 77.
    Brandtner, D. (2013). Bioencapsulation of living cells for diverse medical applications. Bentham books. ISBN: 978-1-60805-721-4.Google Scholar
  78. 78.
    Strand, B. L., Ryan, L., Veld, P. I. T., Kulseng, B., Rokstad, A. M., Skjåk-Bræk, G., & Espevik, T. (2001). Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant, 10(3), 263–275.CrossRefGoogle Scholar
  79. 79.
    Liu, Z. C., & Chang, T. M. (2002). Increased viability of transplanted hepatocytes when hepatocytes are co-encapsulated with bone marrow stem cells using a novel method. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 30(2), 99–112.CrossRefGoogle Scholar
  80. 80.
    Otterlei, M., Østgaard, K., Skjåk-Bræk, G., Smidsrød, O., Soon-Shiong, P., & Espevik, T. (1991). Induction of cytokine production from human monocytes stimulated with alginate. Journal of Immunotherapy, 10(4), 286–291.CrossRefGoogle Scholar
  81. 81.
    Espevik, T., Otterlei, M., Skjåk‐Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23(1), 255–261.CrossRefGoogle Scholar
  82. 82.
    Aiedehe, K., Gianasii, E., Orienti, I., & Zecchi, V. (1997). Chitosan microcapsules as controlled release systems for insulin. Journal of Microencapsulation, 14(5), 567–576.CrossRefGoogle Scholar
  83. 83.
    Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science. Materials in Medicine, 21(7), 2227–2236.CrossRefGoogle Scholar
  84. 84.
    Green, D. W., Leveque, I., Walsh, D., Howard, D., Yang, X., Partridge, K., … Oreffo, R. O. (2005). Polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Advanced Funtional Materials, 15(6), 917–923.CrossRefGoogle Scholar
  85. 85.
    Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737–743.CrossRefGoogle Scholar
  86. 86.
    Chen, H., Ouyang, W., Jones, M., Metz, T., Martoni, C., Haque, T., … Prakash, S. (2007). Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochemistry and Biophysics, 47(1), 159–168.CrossRefGoogle Scholar
  87. 87.
    Tan, W., Krishnaraj, R., & Desai, T. A. (2001). Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Engineering, 7(2), 203–210.CrossRefGoogle Scholar
  88. 88.
    Chevallay, B., & Herbage, D. (2000). Collagen-based biomaterials as 3D scaffold for cell cultures: Applications for tissue engineering and gene therapy. Medical and Biological Engineering and Computing, 38(2), 211–218.CrossRefGoogle Scholar
  89. 89.
    Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233.CrossRefGoogle Scholar
  90. 90.
    Dautzenberg, H., Schuldt, U. T. E., Grasnick, G., Karle, P., MÜller, P., LÖhr, M., … Salmons, B. (1999). Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences, 875, 46–63.CrossRefGoogle Scholar
  91. 91.
    Swioklo, S., & Connon, C. J. (2016). Keeping cells in their place: The future of stem cell encapsulation. Expert Opinion on Biological Therapy, 16(10), 1181–1183.CrossRefGoogle Scholar
  92. 92.
    Higgins, C. C. (1931). Solitary cysts of the kidney. Annals of Surgery, 93(4), 868–879.CrossRefGoogle Scholar
  93. 93.
    Byass, P. (2014). The global burden of liver disease: A challenge for methods and for public health. BMC Medicine, 12, 159.CrossRefGoogle Scholar
  94. 94.
    Hindley, C. J., Cordero-Espinoza, L., & Huch, M. (2016). Organoids from adult liver and pancreas: Stem cell biology and biomedical utility. Development Biology, 420(2), 251–261.CrossRefGoogle Scholar
  95. 95.
    Fox, I. J., & Chowdhury, J. R. (2004). Hepatocyte transplantation. American Journal of Transplantation, 4(6), 7–13.CrossRefGoogle Scholar
  96. 96.
    Sell, S. (2001). Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology, 33(3), 738–750.CrossRefGoogle Scholar
  97. 97.
    Miyajima, A., Tanaka, M., & Itoh, T. (2014). Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell, 14(5), 561–574.CrossRefGoogle Scholar
  98. 98.
    Itoh (2015). Tissue-specific stem cell niche, stem cell biology and regeneration ed. K. Turksen. Switzerland: Springer.Google Scholar
  99. 99.
    Conigliaro, A., Brenner, D. A., & Kisseleva, T. (2010). Hepatic progenitors for liver disease: Current position. Stem Cells Cloning, 3, 39–47.Google Scholar
  100. 100.
    Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., .… Chen, C. (2008). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Research, 68(11), 4287–4295.CrossRefGoogle Scholar
  101. 101.
    de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., … Stange, D. E. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360). 293–297.CrossRefGoogle Scholar
  102. 102.
    Boulter, L., Govaere, O., Bird, T. G., Radulescu, S., Ramachandran, P., Pellicoro, A., … Sansom, O. J. (2012). Macrophage-derived Wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 18(4), 572–579.CrossRefGoogle Scholar
  103. 103.
    Huch, M., Dorrell, C., Boj, S. F., Van Es, J. H., Li, V. S., Van De Wetering, M., … Haft, A. (2013). In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature, 494(7436), 247–250.CrossRefGoogle Scholar
  104. 104.
    Xinguang, Y., Huixing, Y., Xiaowei, W., Xiaojun, W., & Linghua, Y. (2015). R-spondin1 arguments hepatic fibrogenesis in vivo and in vitro. Journal of Surgical Research, 193(2), 598–605.CrossRefGoogle Scholar
  105. 105.
    Kopp, J. L., Grompe, M., & Sander, M. (2016). Stem cells versus plasticity in liver and pancreas regeneration. Nature Cell Biology, 18(3), 238–245.CrossRefGoogle Scholar
  106. 106.
    Yanger, K., Knigin, D., Zong, Y., Maggs, L., Gu, G., Akiyama, H., … Stanger, B. Z. (2014). Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell, 15(3), 340–349.CrossRefGoogle Scholar
  107. 107.
    Tarlow, B. D., Pelz, C., Naugler, W. E., Wakefield, L., Wilson, E. M., Finegold, M. J., & Grompe, M. (2014). Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell, 15(5), 605–618.CrossRefGoogle Scholar
  108. 108.
    Ji, J., & Wang, X. W. (2012). Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Seminars in Oncology, 39(4), 461–472.CrossRefGoogle Scholar
  109. 109.
    Di Bonzo, L. V., Ferrero, I., Cravanzola, C., Mareschi, K., Rustichell, D., Novo, E., … Davit, A. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: Engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57(2), 223–231.Google Scholar
  110. 110.
    Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., … Guo, Y. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45(5), 1229–1239.CrossRefGoogle Scholar
  111. 111.
    Basma, H., Soto–Gutiérrez, A., Yannam, G. R., Liu, L., Ito, R., Yamamoto, T., … Muirhead, D. (2009). Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology, 136(3), 990–999.CrossRefGoogle Scholar
  112. 112.
    Touboul, T., Hannan, N. R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., … Weber, A. (2010). Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology, 51(5), 1754–1765.CrossRefGoogle Scholar
  113. 113.
    Magyar, J. P., Nemir, M., Ehler, E., Suter, N., Perriard, J. C., & Eppenberger, H. M. (2001). Mass production of embryoid bodies in microbeads. Annals of the New York Academy of Sciences, 944(1), 135–143.CrossRefGoogle Scholar
  114. 114.
    Cho, N. J., Elazar, M., Xiong, A., Lee, W., Chiao, E., Baker, J., … Glenn, J. S. (2008). Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomedical materials, 4(1), 011001.CrossRefGoogle Scholar
  115. 115.
    Meier, R. P., Mahou, R., Morel, P., Meyer, J., Montanari, E., Muller, Y. D., … Bühler, L. H. (2015). Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. Journal of Hepatology, 62(3), 634–641.CrossRefGoogle Scholar
  116. 116.
    Meier, R. P., Montanari, E., Morel, P., Pimenta, J., Schuurman, H. J., Wandrey, C., … Bühler, L. H. (2017). Microencapsulation of hepatocytes and mesenchymal stem cells for therapeutic applications. Hepatocyte Transplantation: Methods and Protocols, 259–271.Google Scholar
  117. 117.
    Kisseleva, T., Uchinami, H., Feirt, N., Quintana-Bustamante, O., Segovia, J. C., Schwabe, R. F., & Brenner, D. A. (2006). Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. Journal of hepatology, 45(3), 429–438.CrossRefGoogle Scholar
  118. 118.
    Maguire, T., Novik, E., Schloss, R., & Yarmush, M. (2006). Alginate-PLL microencapsulation: Effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnology and Bioengineering, 93(3). 581–591.CrossRefGoogle Scholar
  119. 119.
    Fang, S., & MAO, L. (2007). Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro. Acta Pharmacologica Sinica, 28(12), 1924–1930.CrossRefGoogle Scholar
  120. 120.
    Palakkan, A. A., Hay, D. C., TV, K., & Ross, J. A. (2013). Liver tissue engineering and cell sources: Issues and challenges. Liver International, 33(5), 666–676.CrossRefGoogle Scholar
  121. 121.
    Kirk, K., Hao, E., Lahmy, R., & Itkin-Ansari, P. (2014). Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Research, 12(3), 807–814.CrossRefGoogle Scholar
  122. 122.
    Scharp, D. W., & Marchetti, P. (2014). Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Advanced Drug Delivery Reviews, 67–68, 35–73.CrossRefGoogle Scholar
  123. 123.
    Sakata, N., Sumi, S., Yoshimatsu, G., Goto, M., Egawa, S., & Unno, M. (2012). Encapsulated islets transplantation: Past, present and future. World Journal of Gastrointestinal Pathophysiology, 3(1), 19–26.CrossRefGoogle Scholar
  124. 124.
    Kirchhof, N., Shibata, S., Wijkstrom, M., Kulick, D. M., Salerno, C. T., Clemmings, S. M., … Hering, B. J. (2004). Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation, 11(5), 396–407.CrossRefGoogle Scholar
  125. 125.
    Elliott, R. B., Escobar, L., Tan, P. L. J., Garkavenko, O., Calafiore, R., Basta, P., … Bambra, C. (2005, October). Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplantation Proceedings, 37(8), 3505–3508.CrossRefGoogle Scholar
  126. 126.
    Duvivier‐Kali, V. F., Omer, A., Lopez‐Avalos, M. D., O’neil, J. J., & Weir, G. C. (2004). Survival of microencapsulated adult pig islets in mice in spite of an antibody response. American Journal of Transplantation, 4(12), 1991–2000.CrossRefGoogle Scholar
  127. 127.
    Elliott, R. B., Escobar, L., Tan, P. L., Muzina, M., Zwain, S., & Buchanan, C. (2007). Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation, 14(2), 157–161.CrossRefGoogle Scholar
  128. 128.
    Tuch, B. E., Keogh, G. W., Williams, L. J., Wu, W., Foster, J. L., Vaithilingam, V., & Philips, R. (2009). Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care, 32(10), 1887–1889.CrossRefGoogle Scholar
  129. 129.
    King, A., Lau, J., Nordin, A., Sandler, S., & Andersson, A. (2003). The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technology & Therapeutics, 5(4), 653–663.CrossRefGoogle Scholar
  130. 130.
    King, A., Andersson, A., Strand, B. L., Lau, J., Skjåk-Bræk, G., & Sandler, S. (2003). The role of capsule composition and biologic responses in the function of transplanted microencapsulated islets of Langerhans. Transplantation, 76(2), 275–279.CrossRefGoogle Scholar
  131. 131.
    Kulseng, B., Thu, B., Espevik, T., & Skjåk-Bræk, G. (1997). Alginate polylysine microcapsules as immune barrier: Permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant, 6(4), 387–394.CrossRefGoogle Scholar
  132. 132.
    Juste, S., Lessard, M., Henley, N., Ménard, M., & Hallé, J. P. (2005). Effect of poly-L-lysine coating on macrophage activation by alginate-based microcapsules: Assessment using a new in vitro method. Journal of Biomedical Materials Research Part A, 72(4), 389–398.CrossRefGoogle Scholar
  133. 133.
    Pueyo, M. E., Darquy, S., Capron, F., & Reach, G. (1994). In vitro activation of human macrophages by alginate-polylysine microcapsules. Journal of Biomaterials Science, Polymer Edition, 5(3), 197–203.CrossRefGoogle Scholar
  134. 134.
    Brennan, D. C., Shannon, M. B., Koch, M. J., Polonsky, K. S., Desai, N., & Shapiro, J. (2004). Portal vein thrombosis complicating islet transplantation in a recipient with the Factor V Leiden mutation. Transplantation, 78(1), 172–173.CrossRefGoogle Scholar
  135. 135.
    Kawahara, T., Kin, T., Kashkoush, S., Gala‐Lopez, B., Bigam, D. L., Kneteman, N. M., … Shapiro, A. J. (2011). Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. American Journal of Transplantation, 11(12), 2700-2707.CrossRefGoogle Scholar
  136. 136.
    Sakata, N., Tan, A., Chan, N., Obenaus, A., Mace, J., Peverini, R., … Hathout, E. (2009, February). Efficacy comparison between intraportal and subcapsular islet transplants in a murine diabetic model. Transplantation Proceedings, 41(1), 346–349.CrossRefGoogle Scholar
  137. 137.
    Christoffersson, G., Carlsson, P. O., & Phillipson, M. (2011). Intramuscular islet transplantation promotes restored islet vascularity. Islets, 3(2), 69–71.CrossRefGoogle Scholar
  138. 138.
    McQuilling, J. P., Arenas-Herrera, J., Childers, C., Pareta, R. A., Khanna, O., Jiang, B., … Opara, E. C. (2011, November). New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplantation Proceedings, 43(9), 3262–3264.CrossRefGoogle Scholar
  139. 139.
    Elliott, R. B., Escobar, L., Calafiore, R., Basta, G., Garkavenko, O., Vasconcellos, A., et al. (2005). Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplantation Proceedings, 37(1), 466–469.CrossRefGoogle Scholar
  140. 140.
    Dufrane, D., van Steenberghe, M., Goebbels, R. M., Saliez, A., Guiot, Y., & Gianello, P. (2006). The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials, 27(17), 3201–3208.CrossRefGoogle Scholar
  141. 141.
    Algire, G. (1943). An adaptation of the transparent-chamber technique to the mouse. Journal of the National Cancer Institute, 1943(4), 1–11.Google Scholar
  142. 142.
    Storrs, R., Dorian, R., King, S. R., Lakey, J., & Rilo, H. (2001). Preclinical development of the Islet sheet. Annals of the New York Academy of Sciences, 2001(944), 252–266.Google Scholar
  143. 143.
    Nyitray, C. E., Chavez, M. G., & Desai, T. A. (2014). Compliant 3D microenvironment improves beta-cell cluster insulin expression through mechanosensing and beta-catenin signaling. Tissue Engineering Part A, 20(13–14), 1888–1895.CrossRefGoogle Scholar
  144. 144.
    de Vos, P., Hamel, A. F., & Tatarkiewicz, K. (2002). Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia, 45(2), 159–173.CrossRefGoogle Scholar
  145. 145.
    Veriter, S., Aouassar, N., Xhema, D., Beaurin, G., Adnet, P. Y., Igarashi, Y., … Dufrane, D. (2011). Islets and mesenchymal stem cells co-encapsulation can improve subcutaneous bioartificial pancreas survival in diabetic primates. The Transplantation Society: CTS-IXA. Parallel Session 5—ISLET xenotransplantation—Preclinical models.Google Scholar
  146. 146.
    Davis, N. E., Beenken-Rothkopf, L. N., Mirsoian, A., Kojic, N., Kaplan, D. L., Barron, A. E., & Fontaine, M. J. (2012). Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials, 33(28), 6691–6697.CrossRefGoogle Scholar
  147. 147.
    Lee, S. H., Hao, E., Savinov, A. Y., Geron, I., Strongin, A. Y., & Itkin-Ansari, P. (2009). Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: Implications for diabetes cell therapies. Transplantation, 87(7), 983–991.CrossRefGoogle Scholar
  148. 148.
    Matveyenko, A. V., Georgia, S., Bhushan, A., & Butler, P. C. (2010). Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. American Journal of Physiology-Endocrinology and Metabolism, 299(5), E713–E720.CrossRefGoogle Scholar
  149. 149.
    Colton, C. K. (2014). Oxygen supply to encapsulated therapeutic cells. Advanced Drug Delivery Reviews, 67–68, 93–110.CrossRefGoogle Scholar
  150. 150.
    Candiello, J., Singh, S. S., Task, K., Kumta, P. N., & Banerjee, I. (2013). Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness. Journal of Biological Engineering, 7(1), 9.CrossRefGoogle Scholar
  151. 151.
    Schulz, T. C. (2015). Concise review: Manufacturing of pancreatic endoderm cells for clinical trials in Type 1 diabetes. Stem Cells Translational Medicine, 4(8), 927–931.CrossRefGoogle Scholar
  152. 152.
    Pagliuca, F. W., Millman, J. R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J. H., … Melton, D. A. (2014). Generation of functional human pancreatic beta cells in vitro. Cell, 159(2), 428–439.CrossRefGoogle Scholar
  153. 153.
    Rezania, A., Bruin, J. E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., … Yang, Y. H. C. (2014). Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 32(11), 1121–1133.CrossRefGoogle Scholar
  154. 154.
    Russ, H. A., Parent, A. V., Ringler, J. J., Hennings, T. G., Nair, G. G., Shveygert, M., … Blelloch, R. (2015). Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. The EMBO Journal, 34(13), 1759–1772.CrossRefGoogle Scholar
  155. 155.
    Agulnick, A. D., Ambruzs, D. M., Moorman, M. A., Bhoumik, A., Cesario, R. M., Payne, J. K., …Kerr, J. (2015). Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Translational Medicine, 4(10), 1214–1222.CrossRefGoogle Scholar
  156. 156.
    Tateishi, K., He, J., Taranova, O., Liang, G., D’Alessio, A. C., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, 283(46), 31601–31607.CrossRefGoogle Scholar
  157. 157.
    Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., … Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences, 106(37), 15768–15773.CrossRefGoogle Scholar
  158. 158.
    Lysy, P. A., Weir, G. C., & Bonner-Weir, S. (2012). Concise review: pancreas regeneration: Recent advances and perspectives. Stem Cells Translational Medicine, 1(2), 150–159.CrossRefGoogle Scholar
  159. 159.
    Noguchi, H., Xu, G., Matsumoto, S., Kaneto, H., Kobayashi, N., Bonner-Weir, S., & Hayashi, S. (2006). Induction of pancreatic stem/progenitor cells into insulin-producing cells by adenoviral-mediated gene transfer technology. Cell transplantation, 15(10), 929–938.CrossRefGoogle Scholar
  160. 160.
    Alberto Hayek, C.K., Brief review: Cell replacement therapies to treat type 1 diabetes mellitus. Clinical Diabetes and Endocrinology, 2(4).Google Scholar
  161. 161.
    Mason, M. N., & Mahoney, M. J. (2009). Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels. Tissue Engineering Part A, 15(6), 1343–1352.CrossRefGoogle Scholar
  162. 162.
    D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., … Baetge, E. E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24(11), 1392–1401.CrossRefGoogle Scholar
  163. 163.
    Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., … Agulnick, A. D. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26(4), 443–452.CrossRefGoogle Scholar
  164. 164.
    Chen, Y., Pan, F. C., Brandes, N., Afelik, S., Sölter, M., & Pieler, T. (2004). Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Developmental Biology, 271(1), 144–160.CrossRefGoogle Scholar
  165. 165.
    Gomes, L. F., Lorente, S., Simon-Giavarotti, K. A., Areco, K. N., Araújo-Peres, C., & Videla, L. A. (2004). Tri-iodothyronine differentially induces Kupffer cell ED1/ED2 subpopulations. Molecular Aspects of Medicine, 25(1–2), 183–190.CrossRefGoogle Scholar
  166. 166.
    Schulz, T. C., Young, H. Y., Agulnick, A. D., Babin, M. J., Baetge, E. E., Bang, A. G., … Kadoya, K. (2012). A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One, 7(5), e37004.CrossRefGoogle Scholar
  167. 167.
    Shapiro, A. M., Nanji, S. A., & Lakey, J. R. (2003). Clinical islet transplant: Current and future directions towards tolerance. Immunological Reviews, 196, 219–236.CrossRefGoogle Scholar
  168. 168.
    Wang, T., Lacík, I., Brissová, M., Anilkumar, A. V., Prokop, A., Hunkeler, D., … Powers, A. C. (1997). An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnology, 15(4), 358–362.CrossRefGoogle Scholar
  169. 169.
    Desai, T., & Shea, L. D. (2017). Advances in islet encapsulation technologies. Nature Reviews Drug Discovery, 16(5), 367.CrossRefGoogle Scholar
  170. 170.
    Brauker, J. H., Carr‐Brendel, V. E., Martinson, L. A., Crudele, J., Johnston, W. D., & Johnson, R. C. (1995). Neovascularization of synthetic membranes directed by membrane microarchitecture. Journal of Biomedical Materials Research Part A, 29(12), 1517–1524.CrossRefGoogle Scholar
  171. 171.
    Geller, R. L., Loudovaris, T., Neuenfeldt, S., Johnson, R. C., & Brauker, J. H. (1997). Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Annals of the New York Academy of Sciences, 1997(831), 438–451.Google Scholar
  172. 172.
    Colton, C. K., & Avgoustiniatos, E. S. (1991). Bioengineering in development of the hybrid artificial pancreas. Journal of Biomechanical Engineering, 113(2), 152–170.CrossRefGoogle Scholar
  173. 173.
    Su, J., Hu, B. H., Lowe, W. L., Kaufman, D. B., & Messersmith, P. B. (2010). Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials, 31(2), 308–314.CrossRefGoogle Scholar
  174. 174.
    Rafael, E., Wu, G. S., Hultenby, K., Tibell, A., & Wernerson, A. (2003). Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: A morphometric study. Cell Transplantation, 12(4), 407–412.CrossRefGoogle Scholar
  175. 175.
    Yakhnenko, I., Wong, W. K., Katkov, I. I., & Itkin-Ansari, P. (2012). Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte. Cryo Letters, 33(6), 518–531.Google Scholar
  176. 176.
    Rafael, E., Wernerson, A., Arner, P., Wu, G. S., & Tibell, A. (1999). In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: A novel application of the microdialysis technique. Cell Transplantation, 8(3), 317–326.CrossRefGoogle Scholar
  177. 177.
    Kumagai-Braesch, M., Jacobson, S., Mori, H., Jia, X., Takahashi, T., Wernerson, A., … Tibell, A. (2013). The TheraCyte device protects against islet allograft rejection in immunized hosts. Cell Transplantation, 22(7), 1137–1146.CrossRefGoogle Scholar
  178. 178.
    ClinicalTrials.gov/beta/. (2016). ViaCyte: Three Year Follow-up Safety Study in Subjects Previously Implanted With VC-01™.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Isgard S. Hueck
    • 1
    • 2
  • Jane Frimodig
    • 1
  • Pamela Itkin-Ansari
    • 1
    • 2
  • David A. Gough
    • 1
    • 2
  1. 1.Department of Bioengineering and Whitaker Institute of Biomedical EngineeringUniversity of California San DiegoLa JollaUSA
  2. 2.Sanford Burnham Prebys Medical Discovery InstituteLa JollaUSA

Personalised recommendations