Skip to main content

Conformational Motions of Disordered Proteins

  • Chapter
  • First Online:
Biological, Physical and Technical Basics of Cell Engineering

Abstract

Molecular dynamics in proteins animate and play a vital role for biologically relevant processes of these biomacromolecules. Quasielastic incoherent neutron scattering (QENS) is a well-suited experimental method to study protein dynamics from the picosecond to several nanoseconds and in the Ångström length-scale. In QENS experiments of protein solutions hydrogens act as reporters for the motions of methyl groups or amino acids to which they are bound. Neutron Spin-Echo spectroscopy (NSE) on the other hand offers the highest energy resolution in the field of neutron spectroscopy. It enables the study of slow collective motions in proteins up to several hundred nanoseconds and in the nanometre length-scale. In the following chapter I will present recent experimental studies that demonstrate the relevance of molecular dynamics for protein folding and for conformational transitions of intrinsically disordered proteins (IDPs). During the folding collapse the protein chain is exploring the accessible conformational space via molecular motions. A large flexibility of partially folded and unfolded proteins, therefore, is mandatory for rapid protein folding. IDPs on the other hand are a special case as they are largely unstructured under physiological conditions in their native states. A large flexibility of IDPs is a characteristic property of the proteins as it allows, for example, the interaction with various binding partners or the rapid response to different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball, P. (2008). Water as an active constituent in cell biology. Chemical Reviews, 108, 74–108. https://doi.org/10.1021/cr068037a.

    Article  Google Scholar 

  2. Banchio, A. J., & Nägele, G. (2008). Short-time transport properties in dense suspensions: From neutral to charge-stabilized colloidal spheres. The Journal of Chemical Physics, 128, 104903. https://doi.org/10.1063/1.2868773.

    Article  Google Scholar 

  3. Bernadó, P., Mylonas, E., Petoukhov, M. V., et al. (2007). Structural characterization of flexible proteins using small-angle X-ray scattering. Journal of the American Chemical Society, 129, 5656–5664.

    Article  Google Scholar 

  4. Biehl, R., & Richter, D. (2014). Slow internal protein dynamics in solution. Journal of Physics: Condensed Matter, 26, 503103. https://doi.org/10.1088/0953-8984/26/50/503103.

    Article  Google Scholar 

  5. Cordeiro, T. N., Herranz-Trillo, F., Urbanek, A., et al. (2017). Small-angle scattering studies of intrinsically disordered proteins and their complexes. Current Opinion in Structural Biology, 42, 15–23.

    Article  Google Scholar 

  6. Dunker, A. K., Oldfield, C. J., Meng, J., et al. (2008). The unfoldomics decade: An update on intrinsically disordered proteins. BMC Genomics, 9, S1. https://doi.org/10.1186/1471-2164-9-S2-S1.

    Article  Google Scholar 

  7. Dyson, H. J., & Wright, P. E. (2017). How does your protein fold? Elucidating the apomyoglobin folding pathway. Accounts of Chemical Research, 50, 105–111. https://doi.org/10.1021/acs.accounts.6b00511.

    Article  Google Scholar 

  8. Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.

    Article  Google Scholar 

  9. Eliezer, D., & Wright, P. E. (1996). Is apomyoglobin a molten globule? Structural characterization by NMR. Journal of Molecular Biology, 263, 531–538. https://doi.org/10.1006/jmbi.1996.0596.

    Article  Google Scholar 

  10. Endres, S., Granzin, J., Circolone, F., et al. (2015). Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiology, 15, 30. https://doi.org/10.1186/s12866-015-0365-0.

    Article  Google Scholar 

  11. Fitter, J., Gutberlet, T., & Katsaras, J. (Eds.). (2006). Neutron scattering in biology—Techniques and applications. Berlin: Springer.

    Google Scholar 

  12. Frauenfelder, H., McMahon, B. H., & Fenimore, P. W. (2003). Myoglobin: The hydrogen atom of biology and a paradigm of complexity. Proceedings of the National Academy of Sciences, 100, 8615–8617. https://doi.org/10.1073/pnas.1633688100.

    Article  Google Scholar 

  13. Granzin, J., Stadler, A., Cousin, A., et al. (2015). Structural evidence for the role of polar core residue Arg175 in arrestin activation. Scientific Reports, 5, 15808. https://doi.org/10.1038/srep15808.

    Article  Google Scholar 

  14. Grimaldo, M., Roosen-Runge, F., Hennig, M., et al. (2015). Hierarchical molecular dynamics of bovine serum albumin in concentrated aqueous solution below and above thermal denaturation. Physical Chemistry Chemical Physics, 17, 4645–4655. https://doi.org/10.1039/c4cp04944f.

    Article  Google Scholar 

  15. Grimaldo, M., Roosen-Runge, F., Zhang, F., et al. (2014). Diffusion and dynamics of γ-globulin in crowded aqueous solutions. The Journal of Physical Chemistry B, 118, 7203–7209. https://doi.org/10.1021/jp504135z.

    Article  Google Scholar 

  16. Guehrs, E., Stadler, A. M., Flewett, S., et al. (2012). Soft X-ray tomoholography. New Journal of Physics, 14, 13022. https://doi.org/10.1088/1367-2630/14/1/013022.

    Article  Google Scholar 

  17. Harauz, G., Ishiyama, N., Hill, C. M., et al. (2004). Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 35, 503–542.

    Article  Google Scholar 

  18. Hennig, M., Roosen-Runge, F., Zhang, F., et al. (2012). Dynamics of highly concentrated protein solutions around the denaturing transition. Soft Matter, 8, 1628. https://doi.org/10.1039/c1sm06609a.

    Article  Google Scholar 

  19. Jamin, M., & Baldwin, R. L. (1998). Two forms of the pH 4 folding intermediate of apomyoglobin. Journal of Molecular Biology, 276, 491–504. https://doi.org/10.1006/jmbi.1997.1543.

    Article  Google Scholar 

  20. Kaschner, M., Schillinger, O., Fettweiss, T., et al. (2017). A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase. Scientific Reports, 7, 42592. https://doi.org/10.1038/srep42592.

    Article  Google Scholar 

  21. Monkenbusch, M., Stadler, A., Biehl, R., et al. (2015). Fast internal dynamics in alcohol dehydrogenase. The Journal of Chemical Physics, 143, 75101.

    Article  Google Scholar 

  22. Receveur, V., Calmettes, P., Smith, J. C., et al. (1997). Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins, 28, 380–387.

    Article  Google Scholar 

  23. Richter, D., Monkenbusch, M., Arbe, A., & Colmenero, J. (2005). Neutron spin echo in polymer systems. Berlin: Springer.

    Book  Google Scholar 

  24. Stadler, A. M., Demmel, F., Ollivier, J., & Seydel, T. (2016). Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding. Physical Chemistry Chemical Physics, 18, 21527–21538. https://doi.org/10.1039/C6CP04146A.

    Article  Google Scholar 

  25. Stadler, A. M., Koza, M. M., & Fitter, J. (2015). Determination of conformational entropy of fully and partially folded conformations of holo- and apomyoglobin. The Journal of Physical Chemistry B, 119, 72–82. https://doi.org/10.1021/jp509732q.

    Article  Google Scholar 

  26. Stadler, A. M., Pellegrini, E., Johnson, M., et al. (2012). Dynamics-stability relationships in Apo- and Holomyoglobin: A combined neutron scattering and molecular dynamics simulations study. Biophysical Journal, 102, 351–359.

    Article  Google Scholar 

  27. Stadler, A. M., Schweins, R., Zaccai, G., & Lindner, P. (2010). Observation of a large-scale superstructure in concentrated hemoglobin solutions by using small angle neutron scattering. The Journal of Physical Chemistry Letters, 1, 1805–1808. https://doi.org/10.1021/jz100576c.

    Article  Google Scholar 

  28. Stadler, A. M., Stingaciu, L., Radulescu, A., et al. (2014). Internal nanosecond dynamics in the intrinsically disordered myelin basic protein. Journal of the American Chemical Society, 136, 6987–6994. https://doi.org/10.1021/ja502343b.

    Article  Google Scholar 

  29. Stadler, A. M., van Eijck, L., Demmel, F., & Artmann, G. (2011). Macromolecular dynamics in red blood cells investigated using neutron spectroscopy. Journal of the Royal Society, Interface, 8, 590–600. https://doi.org/10.1098/rsif.2010.0306.

    Article  Google Scholar 

  30. Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37, 1–8.

    Article  Google Scholar 

  31. Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11, 739–756.

    Article  Google Scholar 

  32. Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.

    Article  Google Scholar 

  33. Wright, P. E., & Dyson, H. J. (2009). Linking folding and binding. Current Opinion in Structural Biology, 19, 31–38. https://doi.org/10.1016/j.sbi.2008.12.003.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the Heinz Maier-Leibnitz Zentrum, the Institut Laue-Langevin, the ISIS Pulsed Neutron and Muon Source and the European Synchrotron Radiation Facility for provision of neutron and synchrotron radiation beam time. I also would like to thank my collaborators who appear as co-authors of the presented scientific articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stadler, A.M. (2018). Conformational Motions of Disordered Proteins. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics