Extraction of Fusicoccin-like Compounds Using Nanocarbon Sorbents and Study of Their Biological and Cytotoxic Activity

  • Z. A. Mansurov
  • S. Azat
  • A. R. Kerimkulova


The problem of creation and use of sorption materials are of current interest for the practice of the modern medicine and agriculture. The knowledge of physical and chemical rules of carbonization, activation as well as sorption and desorption processes is of particular importance in the case of application of the nanostructured carbon sorbent agent for high purification of water contaminated with pesticides, as well as for reducing the concentration of cytokines in the blood of sepsis patients. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is now known that a plant phytohormone—fusicoccin in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccsin from extract of germinated wheat seeds. This method is based on selective sorption of fusicoccin by a nanostructured carbon sorbent. Thus, it becomes possible to create a high-performance domestic anticancer drug.


Activated carbon Fusicoccin Sorbents Carbonization 


  1. 1.
    Dubinin, M. M. (1978). Adsorbents, their preparation, properties and applications. -M, 4–22.Google Scholar
  2. 2.
    Aygun, A., Yenisoy-Karakas, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.Google Scholar
  3. 3.
    Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., & Xu, H. (2002). Carbon materials for sorption. Materials Chemistry and Physics, 74, 320.Google Scholar
  4. 4.
    Daud, W. M., & Ali, W. S. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93, 63–69.Google Scholar
  5. 5.
    Benaddi, H., Bandosz, T. J., Jagiello, J., Schwarz, J. A., Rouzaud, J. N., Legras, D., et al. (2000). Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 38, 669–674.Google Scholar
  6. 6.
    Asma, B. M. (2000). Apricot production. Malatya Evin Ofset, Turkey, 240 p.Google Scholar
  7. 7.
    Smisek, M., & Cerny, S. (1970). Active carbon manufacture, properties and aplications (370 p). New York: Elsevier Publishing Company.Google Scholar
  8. 8.
    Khezami, L., Chetouan, A., Taou, B., & Capar, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157, 48–56.Google Scholar
  9. 9.
    Hayashi, J., Kazehaya, A., Muroyama, K., & Watkinson, A. P. (2000). Preparation of activated carbons from lignin by chemical activation. Carbon, 38, 1873–1878.Google Scholar
  10. 10.
    Jandosov, J. M., Shabanova, T. A., Shamalov, M., Biysenbaev, M. A., & Mansurov, Z. A. (2010). Preparation of carbon materials with high specific surface area. Combustion and Plasma Chemistry, 8(3), 257–261.Google Scholar
  11. 11.
    Klijanienko, A., Grabowska, E. L., & Gryglewicz, G. Z. (2008). Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere. Bioresource Technology, 99, 7208–7214.Google Scholar
  12. 12.
    Jibril, B., Houache, O., Maamari, R. A., & Rashidi, B. A. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83, 151–158.Google Scholar
  13. 13.
    Azat, S. (2013). Synthesis of carbonized nano mesoporous sorbents based on vegetable raw materials. Nanoscience and Nanoengineering International Journal, 1(1), 41–44.Google Scholar
  14. 14.
    Azat, S., Pavlenko, V. V., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Synthesis and structure determination of carbonized nano mesoporous materials based on vegetable raw materials. Advanced Materials Research, 535–537. Online available since Jun 14, 2012 at
  15. 15.
    Fierro, V., Fernandez, V. T., Montane, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 111, 276–284.Google Scholar
  16. 16.
    Cookson, J. T. (1980). Carbon adsorption handbook. In P. N. Cheremisinoff & F. Ellerbusch (Eds.) (pp. 241–279). Michigan: Ann Arbor Sci.Google Scholar
  17. 17.
    Keltsev, N. V. (1976). Fundamentals of adsorption technology. Moscow Chemistry, 512.Google Scholar
  18. 18.
    Greg, S., & Singh, K. (1970). Adsorption, surface area, porosity. M.: Mir, 259.Google Scholar
  19. 19.
    Mansurov, Z. A., Zhylybaeva, N. K., Ualieva, P. S., & Mansurova, R. M. (2002). Obtaining procedure and properties of the sorbents from plant raw material. Chemistry for Sustainable Development, 3, 321–328.Google Scholar
  20. 20.
    Mansurov, Z. A., Digel, I., Biisenbaev, M. A., Savitskaya, I., Kistaubaeva, A., Akimbekov, N., et al. (2012). Composites and their applications. INTECH 2012 Chap. 11, 271–295.Google Scholar
  21. 21.
    Mansurov, Z. A., Shabanova, T. A., & Mansurova, R. M (2004). The morphology of micro nano particles of carbonized plant materials. Bulletin of KazNU. Series of Chemical, 2(34), 129–135.Google Scholar
  22. 22.
    Basso, M. C., Cerrella, E. G., & Cukierman, A. L. (2002). Activated carbons from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions. Industrial & Engineering Chemistry Research, 41, 180–189.Google Scholar
  23. 23.
    Jia, Y. F., & Thomas, K. M. (2000). Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 16, 1114.Google Scholar
  24. 24.
    Azat, S., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Synthesis and structure determination carbonated nanomaterials based on vegetable raw materials. In VII International Symposium “Physics and Chemistry of Carbon Materials/Nanoengineering”, Almaty (pp. 124–126). On Sept 19–21.Google Scholar
  25. 25.
    Mansurov, Z. A. (2008). Synthesis of carbon nanomaterials and their applied aspects. Herald A Series of Chemical, 2(50), 16–31.Google Scholar
  26. 26.
    Azat, S. Mansurov, Z. A. (2011). Wastewater treatment using for carbonized nanosorbents. Vestnik KazNU Chemical Series, 1(61), 166–169.Google Scholar
  27. 27.
    Emuranov, M., Yu, S., Zhylybaeva, N. K., Biysenbaev, M. A., Shabanova, T. A., Ryabikin, Yu., et al. (2006). Multifunctional nanostructured carbonized sorbents. Bulletin of National Academy of Sciences of Kazakhstan A Series of Chemical, 4, 35–41.Google Scholar
  28. 28.
    Bevla, F. R., Rico, D. P., & Gomis, A. F. (1984). Activated carbon from almond shells. Chemical activation. Activating reagent selection and variables influence. Industrial Engineering Chemistry Product Research and Development, 23, 266–269.Google Scholar
  29. 29.
    Aygun, A., Yenisoy-Karakas, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.Google Scholar
  30. 30.
    Razvigorova, M., Budinova, T., Petrov, N., & Minkova, V. (1998). Purification of water by activated carbons from apricot stones, lignites and anthracite. Water Research, 32, 2135–2139.Google Scholar
  31. 31.
    Ballio, A., Chain, E. B., DeLeo, P., Erlanger, B. F., Mauri, M., & Tonolo, A. (1964). Fusicoccin: A new wilting toxin produced by Fusicoccum Amygdali Del. Nature, 203(4642), 297.Google Scholar
  32. 32.
    Babakov, A. V., Abramycheva, N. Y., Bilushi, S. T., & Shevchenko, V. P. (1990). Research fusicoccin interaction with the plasma membrane of higher plants. Biology Membrane, 7.2. M, 107–112.Google Scholar
  33. 33.
    Tajima, N., Nukina, M., Kato, N., & Sassa, T. (2004). Novel fusicoccins R and S, and the fusicoccin S aglycon (phomopsiol) from Phomopsis amygdali Niigata 2-A, and their seed germination-stimulating activity in the presence of abscisic acid. Bioscience, Biotechnology, and Biochemistry, 68(5), 1125–1130.Google Scholar
  34. 34.
    Aducci, P., Ballio, A., Fogliano, V., Fullone, M. R., Marra, M., & Proietti, N. (2003). Purification and photoaffinity labeling of fusicoccin receptors from maize. Development, 130(20), 4847–4858.Google Scholar
  35. 35.
    De Boer, A. H., Watson, B. A., & Cleland, R. E. (1989). Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiology, 89(1), 250–259.Google Scholar
  36. 36.
    Trofimova, M. S., Smolenskaya, I. N., Drabkin, A. V., Galkin, A. V., & Babakov, A. V. (1997). Does plasma membrane H+ATPase activation by fusicoccin involve protein kinase. Physiologia Plantarum, 99(2), 221–226.Google Scholar
  37. 37.
    Olivari, C., Meanti, C., De Michelis, M. I., & Rasi-Caldogno, F. (1998). Fusicoccin binding to its plasma membrane receptor and the activation of the plasma membrane H + -ATPase IV. Fusicoccin induces the association between the plasma membrane H + -ATPase and the fusicoccin receptor. Plant Physiology, 116(2), 529–537.Google Scholar
  38. 38.
    Oecking, C., Eckerskorn, C., & Weiler, E. W. (1994). The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Letters, 352, 163–166.Google Scholar
  39. 39.
    Olivari, C., Albumi, C., Pugliarello, M. C., & De Michelis, M. I. (2000). Phenylarsine oxide inhibits the fusicoccin-induced activation of plasma membrane H + -ATPase. Plant Physiology, 122(2), 463–470.Google Scholar
  40. 40.
    Baunsgaard, L., Fuglsang, A. T., Jahn, T., Korthout, H. A. A. J., De Boer, A. H., & Palmgren, M. G. (1998). The 14-3-3 proteins associate with the plant plasma membrane H + -ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. The Plant Journal 13(5), 661–671.Google Scholar
  41. 41.
    De Vries-van Leeuwen, I. J., Kortekaas-Thijssen, C., Nzigou Mandouckou, J. A., Kas, S., Evidente, A., & De Boer, A. H. (2010). Fusicoccin-A selectively induces apoptosis in tumor cells after interferon-a priming. Cancer Letters, 293(2), 198–206.Google Scholar
  42. 42.
    Sassa, T., Tajima, N., Sato, M., Takahashi, A., & Kato, N. (2002). Fusicoccins P and Q, and 3-epifusicoccins H and Q, new polar fusicoccins from isolate Niigata 2-A of a peach fusicoccum canker fungus. Bioscience, Biotechnology, and Biochemistry, 66(11), 2356–2361.Google Scholar
  43. 43.
    Come, C., Laine, A., Chanrion, M., Edgren, H., Mattila, E., Liu, X., et al. (2009). CIP2A is associated with human breast cancer aggressivity. Clinical Cancer Research, 15(16), 5092–5100.Google Scholar
  44. 44.
    Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., & Oecking, C. (2003). Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO Journal, Chemical structure of Fusicoccin-A, Cotylenin-A and Ophiobolin-A, 22(5)(C), 987–994.Google Scholar
  45. 45.
    Korthout, H. A. A. J., & De Boer, A. H. A. (1994). fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. The Plant Cell, 6(11), 1681–1692.Google Scholar
  46. 46.
    Sassa, T., Tajima, N., Sato, M., Takahashi, A., & Kato, N. (2002). Fusicoccins P and Q, and 3-epifusicoccins H and Q, new polar fusicoccins from isolate Niigata 2-A of a peach fusicoccum canker fungus. Bioscience, Biotechnology, and Biochemistry, 66(11), 2356–2361.Google Scholar
  47. 47.
    Bunney, T. D., De Boer, A. H., & Levin, M. (2003). Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development, 130(20), 4847–4858.Google Scholar
  48. 48.
    Pavlenko, V. V., Anurov, S. A., Mansurov, Z. A., Biysenbaev, M. A., Konkova, T. V., Azat, S., et al. (2014). Preparation of microporous activated carbons based on carbonized shell apricot. Vestnik KazNU, Chemical Series, 3(75), 103–113.Google Scholar
  49. 49.
    Mansurov, Z. A., Jandosov, J. M., Kerimkulova, A. R., Azat, S., Zhubanova, A. A., Digel, I. E., et al. (2013). Nanostructured carbon materials for biomedical Use. Eurasian Chemico-Tecnological Journal, 15(3), 209–217.Google Scholar
  50. 50.
    Mansurov, Z. A., Azat, S., Adekenova, A. S., Kerimkulova, A. R., Ivasenko, S. A., Shulgau, Z. T., et al. (2013). Extraction fusicoccin from wheat seeds using nanocarbon sorbents. Advanced Materials Research, 647, 67–70.Google Scholar
  51. 51.
    Azat, S., Adekenova, A. S., Ivasenko, S. A., Seydahmetova, R. B., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Development of technology for drug fusicoccin on nanocarbon sorbents and the study of the biological activity. Pharmaceutical Bulletin Scientific Journal, 2–3(164), 57–60.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Z. A. Mansurov
    • 1
    • 2
  • S. Azat
    • 1
    • 2
  • A. R. Kerimkulova
    • 1
    • 2
  1. 1.Department of Chemicalphysics and MaterialscienceAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute of Combustion ProblemsAlmatyKazakhstan

Personalised recommendations