Skip to main content

A Density Functional Theory-Based Study of Electronic and Optical Properties of Anatase Titanium Dioxide

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 462))

Abstract

This paper presents an analysis of structural, electronic, and optical properties of pristine anatase titanium dioxide (TiO2) using orthogonalized linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The lattice constants such as a and c, band diagram, density of states (DOS) have also been studied. The band gap shows indirect nature around the fermi level in anatase TiO2. Density of states shows a contribution of Ti3d and O2p orbitals in conduction and valence band regions. From the analysis of optical properties, it is seen that the anatase TiO2 supports the interband indirect transition from O2p in valence region to Ti3d in the conduction region. All the optical properties are discussed in detail under the energy range of 0–16 eV. Further, we have compared the results with previous works as well as with the experimental results. We found that DFT-based simulation results are approximation to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M Landmann, E Rauls and W G Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.: Condens. Matter 24 195503, pp. 1–6, 2012.

    Google Scholar 

  2. H Tang, F Levy, H Berger, and P E Schmid, Urbach tail of anatase TiO2, Phys. Rev. B, vol. 52, no- 11, pp. 7771 – 7774, 1995.

    Google Scholar 

  3. Wan-Jian Yin, Shiyou Chen, Ji Hui Yang, Xin-Gao Gong, Yanfa Yan, and Su-Huai Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett., vol. 96, issue- 22, pp. 1–3, 221901.

    Google Scholar 

  4. F Izumi and Y Fujiki, Bull. Chem. Soc. Jpn. Vol. 49, 709, 1976.

    Google Scholar 

  5. G. D. Davtyan, Sov. Phys. Crystallogr., vol. 21, 499, 1976.

    Google Scholar 

  6. G. D. Davtyan, V. S. Grunin, and V. A. Ioffe, Sov. Phys. Semicond., Vol. 11, 1299, 1977.

    Google Scholar 

  7. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Levy, High mobility n-type charge carriers in large single crystals of anatase (TiO2), J. Appl. Phys., vol.- 75 (1), pp. 633–635, 1994.

    Google Scholar 

  8. Mazmira Mohamad, Bakhtiar Ul Haq, R. Ahmed, A. Shaari, N. Ali, R. Hussain, A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs, Materials Science in Semiconductor Processing, vol. 31, pp. 405–414, 2014.

    Google Scholar 

  9. Shang-Di Mo and W Y Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B, vol. 51, issue. 19, pp. 13023 – 13032, 1995.

    Google Scholar 

  10. V P Zhukov and E V Chulkov., Ab initio approach to the excited electron dynamics in rutile and anatase TiO2, J. Phys.: Condens. Matter, vol. 22, number- 43, 435802, pp. 1–8, 2010.

    Google Scholar 

  11. A. Thilagam, D. J. Simpson, and A. R. Gerson, A first- principles study of the dielectric properties of TiO2 polymorphs, J. Phys.: Condens. Matter, vol. 23, no. -2, 025901, pp. 1–13, 2011.

    Google Scholar 

  12. R. Asahi, Y. Taga, W Mannstadt and A J Freeman, Electronic and optical properties of anatase TiO2, Phys. Rev. B 61, pp. 7459–7465, 2000.

    Google Scholar 

  13. Gong Sai and Liu Bang-Gui, Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation, Chin. Phys. B, vol. 21, no. 5, 057104, pp. 1–7, 2012.

    Google Scholar 

  14. H M Lawler, J. J. Rehr, F. Vila, S. D. Dalosto, E. L. Shirley and Z. H. Levine, Optical to UV spectra and birefringence of SiO2 and TiO2: First- principles calculations with excitonic effects, Phys. Rev. B 78, 205108, pp. 1–8, 2008.

    Google Scholar 

  15. Letizia Chiodo, Juan Maria Garcia- Lastra, Amilcare Iacomino, Stefano Ossicini, Jin Zhao, Hrvoje Petek and Angel Rubio, Self- energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases, Phys. Rev. B, vol. 82, issue – 4, 045207, pp.- 1–12, 2010.

    Google Scholar 

  16. W. Y. Ching and Yong-Nian Xu, R. H. French, First-principles investigation of the optical properties of crystalline poly (di-n-hexylsilane), Phys. Rev. B, vol. 54, no. – 19, pp. 13546–13550, (1996).

    Google Scholar 

  17. Qi-Jun Liu, Ning-Chao Zhang, Fu-Sheng Liu, and Zheng-Tang Liu, Structural, elastic, electronic and optical properties of various mineral phases of TiO2 from first-principles calculations, Phys. Scr., vol. 89, no. – 7, 075703, pp. 1–14, 2014.

    Google Scholar 

  18. Lukas Thulin and John Guerra, Calculations of strain-modified anatase TiO2 band structures, Phys. Rev B 77, 195112, pp. 1–5, 2008.

    Google Scholar 

  19. J. David Griffiths, “Introduction to Electrodynamics”, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.

    Google Scholar 

  20. Walter A. Harrison, Bond-orbital model and the properties of Tetrahedrally coordinated solids, Phys. Rev. B, vol. 8, no. 10, pp. 4487–4498, 1973.

    Google Scholar 

  21. Richard M Martin, “Electronic structure: Basic theory and practical methods”. Cambridge University Press, New York, 2004.

    Google Scholar 

  22. T. Ozaki, Variationally optimized atomic orbitals for large- scale electronic structures, Phys. Rev. B, vol. 67, issue- 15, 155108, pp. 1–5, 2003.

    Google Scholar 

  23. Uttam KumarChowdhury, Md. Atikur Rahman, Md. Afjalur Rahman, M. T. H. Bhuiyan and Md. Lokman Ali, Ab initio study on structural, elastic, electronic and optical properties of cuprate based superconductor, Cogent Phys., vol. 3:1231361, pp. 1–10, 2016.

    Google Scholar 

  24. F. Birch, Phys. Rev. B, vol. 71, pp. 809–824, 1947.

    Google Scholar 

  25. J. P. Perdew & Zunger, Physical Review B, vol. 23, pp. 5048–5079, 1981.

    Google Scholar 

  26. T. Zhu and Shang-Peng Gao, The stability, Electronic Structure, and Optical Property of TiO2 Polymorphs, J. Phys. Chem. C, vol. 118, pp. 11385–11396, 2014.

    Google Scholar 

  27. H. J. Monkhorst, J. D. Pack, Phys. Rev. B, vol. 13, pp. 5188–5192, 1976.

    Google Scholar 

  28. S. Y. Kim, Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods, Appl. Optics, Vol. 35, No. 34, pp. 6703–6707, 1996.

    Google Scholar 

  29. R. J. Gonzalez and R. Zallen, Infrared reflectivity and lattice fundamentals in anatase TiO2, Phys. Rev. B, vol. 55, no.- 11, pp. 7014–7017, 1997.

    Google Scholar 

  30. M. P. Desjarlais, Contrib. Plasma Phys., vol. 45(3–4), pp. 300–304, 2005.

    Google Scholar 

  31. Debanarayan Jana, Anirban Chakraborti, Li- Chyong Chen, Chun Wei Chen and Kuei-Hsien Chen, First principles calculations of the optical properties of CxNy single walled nanotubes, Nanotechnology, IOP publishing, vol. 20 175701, pp. 1–12, 2009.

    Google Scholar 

  32. F. Wooten, “Optical Properties of Solids” (Academic Press, New York and London, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dash, D., Chaudhury, S., Tripathy, S.K. (2018). A Density Functional Theory-Based Study of Electronic and Optical Properties of Anatase Titanium Dioxide. In: Bera, R., Sarkar, S., Chakraborty, S. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 462. Springer, Singapore. https://doi.org/10.1007/978-981-10-7901-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7901-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7900-9

  • Online ISBN: 978-981-10-7901-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics