Skip to main content

Modelling of Thermoelectric and Conduction Mechanism of Multi-nanoribbon Matrix

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 462))

  • 1564 Accesses

Abstract

In this paper, modelling of thermoelectric and conduction mechanism of multilayer graphene nanoribbon (GNR) has performed taking various temperatures. The coordination of various elements H–H–H, C–C–H was calculated using radial distribution function. The current–voltage curves GRN were estimated with variation of temperatures from 4 to 3400 K. To evaluate the conduction mechanism and conductance with different applied voltage dI/dV versus voltage has been performed with varying of temperature. Moreover, the thermoelectric coefficient of GRN with different energy at different temperature has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Naeemi and J. D. Meindl, “Conductance modeling for graphene nanoribbon (GNR) interconnects,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 428–431, May 2007.

    Google Scholar 

  2. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device,” IEEE Electron Device Lett., vol. 28, no. 4, pp. 282–284, Apr. 2007.

    Google Scholar 

  3. Z. F. Wang, Q. W. Shi, Li, Q. Wang, X. Hou, J. G. Zheng, H. Yao, Y. Chen, J. (2007). “Z-shaped graphene nanoribbon quantum dot device”. Applied Physics Letters. 91 (2007) (5): 053109.

    Google Scholar 

  4. Bullis Kevin, “Graphene Transistors”. Technology Review. Cambridge: MIT Technology Review, Inc. Retrieved 2008-02-18.

    Google Scholar 

  5. Z. H. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 40, pp. 228–232, Dec 2007.

    Google Scholar 

  6. J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. De Heer, C. Berger, P.N. First, L. Magaud, and E. H. Conrad, “Why multilayer graphene on 4H-SiC(0001)over-bar behaves like a single sheet of graphene,” Physical Review Letters, vol. 100, p. 125504, Mar 2008.

    Google Scholar 

  7. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, p. 151911, Apr 2008.

    Google Scholar 

  8. D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press, New York, 1995).

    Google Scholar 

  9. M. R. Chavez-Castillo, M. A. Rodrıguez-Mezab, and L. Meza-Montesa, “2D radial distribution function of silicene,” Revista Mexicana de Fısica 58 (2012) 139–143.

    Google Scholar 

  10. S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge, U.K.: Cambridge Univ. Press, 1995.

    Google Scholar 

  11. C. Xu, H. Li, K. Banerjee,” Modeling, Analysis, and Design of Graphene Nano-Ribbon Interconnects” IEEE Trans. Electron Dev., Vol. 56, No. 8, August 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, A., Pradhan, P.C., Swain, B.P. (2018). Modelling of Thermoelectric and Conduction Mechanism of Multi-nanoribbon Matrix. In: Bera, R., Sarkar, S., Chakraborty, S. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 462. Springer, Singapore. https://doi.org/10.1007/978-981-10-7901-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7901-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7900-9

  • Online ISBN: 978-981-10-7901-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics