Evolution of Texture in Some Mn Steel

Chapter
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Deformation texture, microstructure, and tensile properties have been studied in a high Al containing TWIP steel with a composition Fe–12Mn–0.6C–5.5Al. Alloy was cold rolled to a large reduction in thickness (ε t ≈ 3). The deformed microstructure has been characterized by X-ray diffraction and electron backscatter diffraction. Bulk X-ray texture reveals the development of Bs-type texture with deformation. Microstructural features indicate the occurrence of different deformation mechanisms at different reduction levels. At very early stage of deformation, dislocation slip is the dominant mechanism, at intermediate stage, deformation takes place by twinning, and at large strains, the deformation is governed by shear banding. Significant improvement of yield strength is observed by the addition of Al.

Keywords

Structure Texture Microstructure Yield strength 

Notes

Acknowledgements

This work was inspired by a grant from R & D Division, Tata Steel India Ltd. The authors are grateful to Drs. S. Chandra and S. Kundu for many useful discussions. The extensive use of microscopes at the Advanced Facility of Microscopy and Microanalysis (AFMM) facility and XRD at the Institute X-ray facility, Indian Institute of Science, Bangalore is also acknowledged.

References

  1. 1.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier, Current Opinion in Solid State & Materials Science, 15 (2011), 141–168Google Scholar
  2. 2.
    B.C. DeCooman, O. Kwon and K. Chin, Materials Science and Technology, 28 (2012), 513–527Google Scholar
  3. 3.
    Neu, R., Mater Perform Charact, 2 (2013), 244–284Google Scholar
  4. 4.
    O. Grässel, L. Krüger, G. Frommeyer and L.W. Meyer, International Journal of Plasticity, 16 (2000), 1391–1409Google Scholar
  5. 5.
    C. Herrera, D. Ponge and D. Raabe, Acta Materialia, 59 (2011), 4653–4664Google Scholar
  6. 6.
    O. Bouaziz, S. Allain and C. Scott, Scripta Materialia, 58 (2008), 484–487Google Scholar
  7. 7.
    L. Remy, Acta Materialia, 26 (1978), 443–451Google Scholar
  8. 8.
    I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier and C.N. Tomé, Acta Materialia, 48 (2000), 2031–2047Google Scholar
  9. 9.
    K. Renard, S. Ryelandt and P. Jacques, Materials Science and Engineering: A, 527 (2010), 2969–2977Google Scholar
  10. 10.
    L. Bracke, J. Penning and N. Akdut, Metallurgical and Materials Transactions A, 38 (2007), 520–528Google Scholar
  11. 11.
    S. Lee, J. Kim, S.-J. Lee and B.C. DeCooman, Scripta Materialia, 65 (2011), 528–531Google Scholar
  12. 12.
    L. Chen, H.-S. Kim, S.-K. Kim and B.C. DeCooman, ISIJ International, 47 (2007), 1804–1812Google Scholar
  13. 13.
    L. Bracke, K. Verbeken, L. Kestens and J. Penning, Acta Materialia, 57 (2009), 1512–1524Google Scholar
  14. 14.
    L. Remy, and A. Pineau, Materials Science and Engineering, 28 (1977), 99–107Google Scholar
  15. 15.
    T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha and S.-J. Kim, Acta Materialia, 58 (2010), 3173–3186Google Scholar
  16. 16.
    S. Curtze, V.-T. Kuokkala, A. Oikari, J. Talonen and H. Hänninen, Acta Materialia, 59 (2011), 1068–1076Google Scholar
  17. 17.
    J.-E. Jin and Y.-K. Lee, Acta Materialia, 60 (2012), 1680–1688Google Scholar
  18. 18.
    G. Olson, and M. Cohen, J. Less-Common Met., 28 (1972), 107–118Google Scholar
  19. 19.
    S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Materials Science and Engineering: A, 387 (2004), 158–162Google Scholar
  20. 20.
    J. Hirsch and K. Lücke, Acta Metallurgica, 36 (1988), 2883–2904Google Scholar
  21. 21.
    T. Leffers and R. Ray, Progress in Materials Science, 54 (2009), 351–396Google Scholar
  22. 22.
    R. Smallman and D. Green, Acta Metallurgica, 12 (1964), 145–154Google Scholar
  23. 23.
    R. Madhavan, R. Ray and S. Suwas, Acta Materialia, 74 (2014), 151–164Google Scholar
  24. 24.
    R. Madhavan, R. Ray and S. Suwas, Acta Materialia, 78 (2014), 222–235Google Scholar
  25. 25.
    R. Madhavan and S. Suwas, Philosophical Magazine Letters, 94 (2014), 548–555Google Scholar
  26. 26.
    F. Bachmann, R. Hielscher and H. Schaeben. Texture analysis with MTEX–free and open source software toolbox. in Solid State Phenomena. (2010). Trans Tech PublGoogle Scholar
  27. 27.
    A.A. Saleh, C. Haase, E.V. Pereloma, D.A. Molodov and A.A. Gazder, Acta Materialia, 70 (2014), 259–271Google Scholar
  28. 28.
    N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar and S. Suwas, Metallurgical and Materials Transactions A, 43 (2012), 5193–5201Google Scholar
  29. 29.
    C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov and G. Gottstein, Metallurgical and Materials Transactions A, 44 (2013), 911–922Google Scholar
  30. 30.
    S. Vercammen, B. Blanpain, B.C. DeCooman and P. Wollants, Acta Materialia, 52 (2004), 2005–2012Google Scholar
  31. 31.
    J. Hirsch and K. Lücke, Acta Metallurgica, 36 (1988), 2863–2882Google Scholar
  32. 32.
    J.-E. Jin and Y.-K. Lee, Materials Science and Engineering: A, 527 (2009), 157–161Google Scholar
  33. 33.
    I. Gutierrez-Urrutia and D. Raabe, Acta Materialia, 59 (2011), 6449–6462Google Scholar
  34. 34.
    T. Byun, Acta Materialia, 51(2003), 3063–3071Google Scholar
  35. 35.
    R. Garg, S. Ranganathan and S. Suwas, Materials Science and Engineering: A, 527 (2010), 4582–4592Google Scholar
  36. 36.
    D. Barbier, N. Gey, S. Allain, N. Bozzolo and M. Humbert, Materials Science and Engineering: A, 500 (2009), 196–206Google Scholar
  37. 37.
    S. Lee, Y. Estrin and B.C. DeCooman, Metallurgical and Materials Transactions A, 45 (2014), 717–730Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations