Advertisement

An Overview on Structure–Property Relationship of TRIP-Aided Steel

  • Ravi Ranjan
  • Tanmay Bhattacharyya
  • Shiv Brat Singh
Chapter
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Retained austenite in microstructure of TRIP-aided steel plays an important role and governs its performance. In the present paper, the microstructure and mechanical properties of some experimental TRIP-aided steels have been discussed. Prediction of the amount of retained austenite in the final microstructure has been done using mathematical models based on (a) artificial neural network (ANN) technique and (b) the theory of bainite transformation. The microstructure and mechanical properties of the experimental TRIP-aided steels have been studied and an attempt has been made to establish a correlation between the two. Promising results on microstructure and strength–ductility combinations along with reasonably enhanced coatability were obtained on laboratory samples.

Keywords

TRIP aided steel Artificial neural network Retained austenite Bainite 

References

  1. 1.
    B.C. De Cooman, K. Chin and J. Kim, New Trends and Development in Automotive System Engineering (M. Chiaberge), INTECH Open Access Publisher, (2011), 101Google Scholar
  2. 2.
    M.Y. Demeri, Advanced High-Strength Steels: Science, Technology, and Applications, ASM International, (2013)Google Scholar
  3. 3.
    G. Cole, A. Glove, R. Jeryan and G. Davies, Steel World, 2 (1997), 75Google Scholar
  4. 4.
    V.F. Zackay, E.R. Parker and E.R. Parker, ASM Trans, 60 (1967), 252Google Scholar
  5. 5.
    G.B. Olson, R. Chait, M. Azrin and R.A. Gagne, Metallurgical and Materials Transactions A, 11 (1980), 1069Google Scholar
  6. 6.
    K.-i. Sugimoto, D. Fiji, and N. Yoshikawa, Procedia Engineering, 2 (2012), 359Google Scholar
  7. 7.
    J. Danzeisen, M. Merklein and K. Roll, International Journal of Material Forming, 1 (2008), 221–224Google Scholar
  8. 8.
    A.K. Srivastava, G. Jha, N. Gope and S.B. Singh, Materials Characterization, 57 (2006), 127Google Scholar
  9. 9.
    P. Jacques, X. Cornet, Ph. Harlet, J. Ladriere and F. Delannay, Metallurgical and Materials Transactions A, 29 (1998), 2383Google Scholar
  10. 10.
    T. De Cock, J.P. Ferrer, C. Capdevila, F.G. Caballero, V. López and C.G. de Andrés, Scripta Materiallia, 55 (2006), 441Google Scholar
  11. 11.
    D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh and S.J. Kim, Metallurgical and Materials Transactions A, 41 (2010), 397Google Scholar
  12. 12.
    M. De Meyer, D. Vanderschueren and B.C. De Cooman, ISIJ International, 39 (1999), 813Google Scholar
  13. 13.
    A. Pichler, P. Stiaszny, R. Potzinger, R. Tikal and E. Werner, Proc. 40th MWSP Conf., ISS, Warrendale, 1998, 259Google Scholar
  14. 14.
    B.C. De Cooman, Current Opinion in Solid State and Material Science, 8 (2004), 285Google Scholar
  15. 15.
    H.C. Chen, H. Era and M. Shimizu, Metallurgical and Materials Transactions A, 20 (1989), 437Google Scholar
  16. 16.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels Microstructure and Properties, 3rd Edition, Elsevier Ltd. (2006)Google Scholar
  17. 17.
    J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computing, Addison-Wesley Publishing Company (1991)Google Scholar
  18. 18.
    S. Mandal, P.V. Sivaprasad, P. Barat and B. Raj, Materials and Manufacturing Processes, 24 (2009), 219Google Scholar
  19. 19.
    S. Datta, M.K. Banerjee, Scandinavian Journal of Metallurgy, 33 (2004), 310Google Scholar
  20. 20.
    T. Bhattacharyya, S.B. Singh, S.S. Dey, S. Bhattacharyya, W. Bleck, and D. Bhattacharjee, Materials Science & Engineering A, 565 (2013), 148Google Scholar
  21. 21.
    H.K.D.H. Bhadeshia, Bainite in Steel, 2nd Edition, Maney Materials Science, (2001)Google Scholar
  22. 22.
    S.B. Singh, Phase transformation, in Steels (E. Pereloma and D.V. Edmonds), Woodhead Publishing, (2012)Google Scholar
  23. 23.
    D.P. Koistinen and R.E. Marburger, Acta Metallurgica, 7 (1959), 59Google Scholar
  24. 24.
    R. Ranjan, H. Beladi, S.B. Singh and P.D. Hodgson, Metallurgical and Materials Transactions A, 46 (2015), 3232Google Scholar
  25. 25.
    S.J. Kim, G.C. Lee, I. Choi and S. Lee, Metallurgical and Materials Transactions A, 32 (2001), 505Google Scholar
  26. 26.
    M.F. Gallagher, J.G. Speer, D.K. Matlock and M.N. Fonstein, Proceedings of the 44th Mechanical Working and Steel Processing Conference, Iron and Steel Society, Orlando (2002), 53Google Scholar
  27. 27.
    M. Soliman and H. Palkowaski, Metallurgical and Materials Transactions A, 39 (2008), 2513Google Scholar
  28. 28.
    S. Hashimoto, S. Ikeda, K. Sugimoto and S. Miyake, ISIJ International, 44 (2004), 1590Google Scholar
  29. 29.
    T. Bhattacharyya, S.B. Singh, S. Bhattacharyya, R.K. Ray, W. Bleck and D. Bhattacharjee, Surface & Coatings Technology, 235 (2013), 226Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ravi Ranjan
    • 1
  • Tanmay Bhattacharyya
    • 2
  • Shiv Brat Singh
    • 1
  1. 1.Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.TATA Steel LtdJamshedpurIndia

Personalised recommendations