Effect of Flash Annealing on Ultra-Fine Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cryorolling

  • Raj Bahadur Singh
  • N. K. Mukhopadhyay
  • G. V. S. Sastry
  • R. Manna
Chapter
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Low-carbon steel (LCS) work pieces are deformed through equal-channel angular pressing (ECAP) up to an equivalent strain of 16.8 (28 passes) at room temperature. Microstructures are characterized by optical microscopy and transmission electron microscopy. Mechanical properties are evaluated by tensile testing and hardness measurements. The material gets refined to ultra-fine level of average grain size of 0.2 μm and the ultimate tensile strength improves from 368 MPa to ultra-high strength of 1008 MPa. ECAP followed by cryorolling of low-carbon steel at −50 °C for 75% of reduction in the area produces bulk nanostructured grains of size 87 nm. The strength of the material further enhanced to 1238 MPa. The strengthening is due to reduction in grain size and high defect density. But the material loses its ductility due to high defect density and nonequilibrium nature of grain boundaries. Flash annealing at 600 °C of bulk nanostructured low-carbon steel produces the bimodal grain size distribution of UFG and micron-sized grains in the microstructure which partially recovers uniform elongation of 20% with improved strength. The material still maintains hardness which is twice as that of as-received material but it decreases with increase in flash annealing temperature.

Keywords

Equal-channel angular pressing Cryorolling Flash annealing Low-carbon steel Ultra-fine grained materials Bimodal grain size distribution Bulk nanostructured steel 

References

  1. 1.
    R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Progress in Materials Science, 45 (2000), 103–189Google Scholar
  2. 2.
    A.A. Karimpoor, U. Erb, K.T. Aust and G. Palumbo, Scripta Materialia, 49 (2003), 651–656Google Scholar
  3. 3.
    K.T. Park and D.H. Shin, Materials Science and Engineering: A, 334 (2002), 79–86Google Scholar
  4. 4.
    C.C. Koch, Scripta Materialia, 49 (2003), 657–662Google Scholar
  5. 5.
    E.O. Hall, Proceedings of the Physical Society. Section B, 64 (1951), 747–53Google Scholar
  6. 6.
    N.J. Petch, Journal of the Iron and Steel Institute, 174 (1953), 25Google Scholar
  7. 7.
    R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Materials Science and Engineering: A, 441 (2006), 1–17Google Scholar
  8. 8.
    V.M. Segal, Materials Science and Engineering: A, 386 (2004), 269Google Scholar
  9. 9.
    D.H. Shin and K.T. Park, Materials Science and Engineering: A, 410–411 (2005), 299–302Google Scholar
  10. 10.
    S.M. Hosseini, M. Alishahi, A. Najafizadeh and A. Kermanpur, Materials Letters, 74 (2012), 206–208Google Scholar
  11. 11.
    Y.M. Wang, M.W. Chen, F.H. Zhou and E. Ma, Nature, 419 (2002), 912–915Google Scholar
  12. 12.
    H.A. Alizamini, M. Militzer and W.J. Poole, A novel technique for developing bimodal grain size distributions in low carbon steels, Scripta Materialia, 57(12) (2007), 1065–1068Google Scholar
  13. 13.
    P.J. Szabo, D.P. Field, B. Joni, J. Horky and T.S. Ungar, Metallurgical And Materials Transactions A, 46a (2015), 1948–1957Google Scholar
  14. 14.
    S. Patra, S.Md. Hasan, N. Narasaiah and D. Chakrabarti, Materials Science and Engineering A, 538 (2012), 145–155Google Scholar
  15. 15.
    T.S. Wang, F.C. Zhang, M. Zhang and B. Lv, Materials Science and Engineering A, 485 (2008), 456–460Google Scholar
  16. 16.
    R.Z. Valiev and T.G. Langdon, Progress in Materials Science, 51 (2006), 881Google Scholar
  17. 17.
    M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon, Materials Science and Engineering: A, 389 (2002), 82–89Google Scholar
  18. 18.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Scripta Materialia, 35 (1996), 143–146Google Scholar
  19. 19.
    D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry and R. Manna, Transactions of the Indian Institute of Metals, (2016)  https://doi.org/10.1007/s12666-016-0881-0.
  20. 20.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, second Ed, Pergamon Press Oxford, (1995), pp 368–371Google Scholar
  21. 21.
    R. Manna, N.K. Mukhopadhyay and G.V.S. Sastry, Scripta Materialia, 53 (2005), 1357–1361Google Scholar
  22. 22.
    Y.T. Zhu and T.C. Lowe, Materials Science and Engineering: A, 291 (2000), 46–53Google Scholar
  23. 23.
    D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Metallurgical and Materials Transactions A, 47 (2016), 1803–1817Google Scholar
  24. 24.
    D.H. Shin, B.C. Kim, Y.S. Kim and K.T. Park, Acta Materialia, 48 (2000), 2247–2255Google Scholar
  25. 25.
    D.H. Shin, I. Kim, J. Kim and K.T. Park, Acta Materialia. 49 (2001), 1285–1292Google Scholar
  26. 26.
    N. Hansen, X. Huang and G. Winther, Materials Science and Engineering: A, 494 (2008), 61–67Google Scholar
  27. 27.
    M. Hasegawa and H. Fukutomi, Materials Transactions, 43(5) (2002), 1183–1190Google Scholar
  28. 28.
    D. Verma, S. Pandey, A. Bansal, S. Upadhyay, N.K. Mukhopadhyay, G.V.S. Sastry and R. Manna, Journal of Materials Engineering and Performance, (2016), 1–10.  https://doi.org/10.1007/s11665-016-2392-x.
  29. 29.
    C. Antonione, G. Dellagatta, G. Riontino and G. Venturello, Journal of Materials Science, 8 (1973), 1–10Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Raj Bahadur Singh
    • 1
  • N. K. Mukhopadhyay
    • 1
  • G. V. S. Sastry
    • 1
  • R. Manna
    • 1
  1. 1.Department of Metallurgical EngineeringIndian Institute of Technology, (Banaras Hindu University)VaranasiIndia

Personalised recommendations