Skip to main content

Laser-Induced Shock Compession

  • Chapter
  • First Online:
  • 632 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The interdependence of pressure and temperature in the shock compression limits the achieving sufficiently high pressures without the heating of the test material. Shock compression of a precooled substance also does not lead to a reduction of temperature. In other words, the region of the PT diagram immediately adjoining the Ρ-axis is in principle inaccessible in shock-wave experiments. However, the dynamic compression at P ≥ 100 GPa is important for studying the metallization of dielectrics, including condensed gases, for the reduction of residual temperatures after intense shock loading, and for the prevention of the annealing of the high-pressure phases formed and the decomposition of the newly formed chemical compounds, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.V. Al’tshuler, A.P. Petrunin, Sov. Phys. Tech. Phys. 6, 516 (1961)

    Google Scholar 

  2. G.A. Askaryon, E.M. Morez, JETP Lett. 16, 1638 (1963)

    Google Scholar 

  3. J. Edwards, K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J.M. McNaney, J.A. Greenough, R. Wallace, H. Louis, D. Kalantar, Phys. Rev. Lett. 92, 075002 (2004)

    Article  Google Scholar 

  4. W.G. Hoover, Phys. Rev. Lett. 42, 1531 (1979)

    Article  Google Scholar 

  5. D.C. Swift, R.P. Johnson, Phys. Rev. E 71, 066401 (2005)

    Article  Google Scholar 

  6. S.S. Nabatov, A.N. Dremin, V.I. Postnov, V.V. Yakushev, Abstracts of Reports at Illrd All-Union Symposium on Pressure Pulses (Moscow, 1979), p. 86

    Google Scholar 

  7. R.S. Hawke, D.E. Duerre, J.G. Huebel, R.N. Keeler, H.K. Klapper, J. Phys. Earth Planet Inter. 6, 44 (1972)

    Article  Google Scholar 

  8. W.J. Nellis, Rep. Prog. Phys. 69, 1479 (2006)

    Article  Google Scholar 

  9. B.P. Fairand, A.H. Clauer, R.G. Jung, B.A. Wileot, Appl. Phys. Lett. 25, 431 (1974)

    Article  Google Scholar 

  10. A.H. Clauer, J.H. Holbrouk, B.P. Fairand, in Shock Waves and High-Strain-Rate Phenomena in Metals, eds. by M.A Meyers, L.M. Murr (Plenum, New York, 1981), p. 67

    Google Scholar 

  11. J.S. Wark, R.R. Whitlock, A.A. Hauer, J.E. Swain, P.J. Solone, Phys. Rev. B 40, 5705 (1989)

    Article  Google Scholar 

  12. J. Johnson, High Pressure Science and Technology-1993 (AIP, New York, 1994), p. 1145

    Google Scholar 

  13. M.A. Meyers, H. Jarmakani, B.Y. Cao, C.T. Wei, B. Kad, B.A. Remington, E.M. Bringa, B. Maddox, D. Kalantar, D. Eder, A. Koniges, DYMAT 999–1006 (2009)

    Google Scholar 

  14. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, J.S. Wark, Acta Mater. 51, 1211 (2003)

    Article  Google Scholar 

  15. R.F. Smith, J.H. Eggert, R. Jeanloz, T.S. Duffy, D.G. Braun, J.R. Patterson, R.E. Rudd, J. Biener, A.E. Lazicki, A.V. Hamza, J. Wang, T. Braun, L.X. Benedict, P.M. Celliers, G.W. Collins, Nature 511, 330 (2014)

    Google Scholar 

  16. N. Amadou, E. Brambrink, T. Vinci, A. Benuzzi-Mounaix, G. Huser, S. Brygoo, G. Morard, F. Guyot, T. de Resseguier, S. Mazevet, K. Miyanishi, N. Ozaki, R. Kodama, O. Henry, D. Raffestin, T. Boehly, M. Koenig, Phys. Plasmas 22, 022705 (2015)

    Article  Google Scholar 

  17. J. Wang, F. Coppari, R.F. Smith, J.H. Eggert, A.E. Lazicki, D.E. Fratanduono, J.R. Rygg, T.R. Boehly, G.W. Collins, T.S. Duffy, Phys. Rev. B 94, 104102 (2016)

    Article  Google Scholar 

  18. D. Veysset, T. Pezeril, S. Kooi, A. Bulou, K.A. Nelson, Appl. Phys. Lett. 106, 161902 (2015)

    Article  Google Scholar 

  19. M.G. Gorman, R. Briggs, E.E. McBride, A. Higginbotham, B. Arnold, J.H. Eggert, D.E. Fratanduono, E. Galtier, A.E. Lazicki, H.J. Lee, H.P. Liermann, B. Nagler, A. Rothkirch, R.F. Smith, D.C. Swift, G.W. Collins, J.S. Wark, M.I. McMahon, Phys. Rev. Lett. 115, 095701 (2015)

    Article  Google Scholar 

  20. G. Sciaini, M. Harb, S.G. Kruglik, T. Payer, C.T. Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M. Horn-vonHoegen, R. Ernstorfer, R.J.D. Miller, Nature 458, 456 (2009)

    Article  Google Scholar 

  21. J. Hu, K. Ichiyanagi, T. Doki, A. Goto, T. Eda, K. Norimatsu, S. Harada, D. Horiuchi, Y. Kabasawa, S. Hayashi, S.-I. Uozumi, N. Kawai, S. Nozawa, T. Sato, S.-I. Adachi, K.G. Nakamura, Appl. Phys. Lett. 103, 161904 (2013)

    Article  Google Scholar 

  22. C.-H. Lu, E.N. Hahn, B.A. Remington, B.R. Maddox, E.M. Bringa, M.A. Meyers, Sci. Rep. 5, 15064 (2016)

    Article  Google Scholar 

  23. S.S. Batsanov, B.A. Demidov, L.I. Rudakov, JETP Lett. 30, 575 (1979)

    Google Scholar 

  24. B.A. Demidov, A.I. Martynov, Sov. Phys. JETP 53, 374 (1981)

    Google Scholar 

  25. S.S. Batsanov, B.A. Demidov, M.V. Ivkin, L.I. Kopaneva, E.V. Lazareva, A.I. Martynov, V.A. Petrov, Inorg. Mater. 26, 1799 (1990)

    Google Scholar 

  26. B.A. Demidov, Plasma Phys. Rep. 29, 618 (2003)

    Article  Google Scholar 

  27. D. Bancroft, E.L. Peterson, S. Minshall, J. Appl. Phys. 27, 291 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batsanov, S.S. (2018). Laser-Induced Shock Compession. In: Shock and Materials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-7886-6_3

Download citation

Publish with us

Policies and ethics