Skip to main content

Biopulping

  • Chapter
  • First Online:
Biotechnology for Pulp and Paper Processing

Abstract

Biopulping is the fungal pretreatment of wood chips for production of mechanical or chemical pulps . Its concept is based on the ability of a restricted number of white-rot fungi to colonize and degrade selectively the lignin in wood, thereby leaving cellulose relatively intact. This process appears to have the potential to overcome some problems associated with conventional chemical and mechanical pulping methods. Biopulping is an environmentally friendly technology that substantially increases mill throughput or reduces electrical energy consumption at the same throughput in conjunction with mechanical pulping . Electrical energy is the major cost of conventional mechanical pulping . By producing stronger pulp with longer fibers and increased fibrillation , biomechanical pulping may reduce the amount of kraft pulp required to increase pulp strength. Some selected lignin -degrading fungi can alter cell walls of wood in a short period after inoculation. A comprehensive evaluation of biopulping at the Forest Products Laboratory showed that these fungi can be economically grown on wood chips in an outdoor chip pile-based system. Results also demonstrate the great potential of fungal pretreatment of wood chips prior to chemical pulp production. The most prominent benefit of fungal pretreatment is improved effects on cooking, leading to reduced Kappa numbers /reduced active alkali charge and/or reduced cooking time after only 1–2 weeks of fungal treatment. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness , strength, and bleachability. The bleached biopulps are easier to refine than the reference pulp. The process has been scaled up toward industrial level, with optimization of various process steps and evaluation of economic feasibility. The process can be carried out in chip piles or in silos . The biochemical mechanism of biopulping is still mostly unknown. It is, however, likely that the biopulping effect is caused by the lignin -degrading system of white-rot fungi. There has been quite little correlation between removal of specific components of the wood by the fungi and efficacy of the fungal pretreatment in either energy savings or paper strength property improvement. Biopulping technology has advanced rapidly within recent years, and pilot mill trials have been started worldwide. This technology coincides perfectly with environmentally safe production strategies and can be implemented in existing production plants without major changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu I, Yoshihara K, Kamishima H (1984) Influence of white-rot fungi on poplar chips and thermo-mechanical pulping of fungi-treated chips. Mokuzai Gakkaishi 30:697–702

    CAS  Google Scholar 

  • Akamatsu IH, Ueshima KY, Umeda TA (1988) Biological pulping apparatus for wood chips. Japanese Patent Application 1988; 63/83537

    Google Scholar 

  • Akhtar M (1994) Biomechanical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48:199–202

    Article  CAS  Google Scholar 

  • Akhtar M (1997). Method of enhancing biopulping efficiency. US Patent 1997; 5,620,564

    Google Scholar 

  • Akhtar M, Attridge NC, Myers GC (1992a) Biomechanical pulping of loblolly pine with different strains of the white-rot fungus Ceriporiopsis subvermispora. Tappi J 75(2):105–109

    CAS  Google Scholar 

  • Akhtar M, Attridge, MC Blanchette RA (1992b) The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of both hardwood and softwood chips. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. UNI Publishers Co., Kyoto, pp 3–8

    Google Scholar 

  • Akhtar M, Attridge MC, Myers GC (1993) Biomechanical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung 1993(47):36–40

    Article  Google Scholar 

  • Akhtar M, Blanchette RA, Burnes T (1995a) Using Simons stain to predict energy savings during biomechanical pulping. Wood Fiber Sci 27(3):258–264

    CAS  Google Scholar 

  • Akhtar M, Attridge MC, Koning JW et al (1995b). Method of pulping wood chips with a fungi using sulfite salt-treated wood chips. US Patent 1995; 5,460,697

    Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1996) Biopulping: an overview of consortia research. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Recent advances in applied and fundamental research. Facultas-Universitatsverlag, Vienna, pp 187–192

    Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1997a) Fungal delignification and biomechanical pulping of wood. Adv Biochem Eng Biotechnol 57:159–195

    CAS  Google Scholar 

  • Akhtar M, Lentz MJ, Blanchette RA (1997b) Corn steep liquor lowers the amount of inoculum for biopulping. Tappi J 80(6):161–164

    CAS  Google Scholar 

  • Akhtar M, Blanchette RA, Myers G (1998) An overview of biomechanical pulping research. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–340

    Google Scholar 

  • Ander P, Eriksson KE (1975) Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Sven Papperstid 78:643–652

    CAS  Google Scholar 

  • Arppe M (2001) Mechanical pulp: has it got a future or will it be discontinued? Int Papwirtsch 10(2001):45–50

    Google Scholar 

  • Bajpai P, Bajpai PK and Kondo R (1999) Biotechnology for environmental protection in pulp and paper industry. Springer, Germany (Chapter 8), pp 141–170

    Google Scholar 

  • Bajpai P, Bajpai PK, Akhtar M (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Pap Sci 27(7):235–239

    CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Akhtar M (2003). Eucalyptus biokraft pulping process, US Patent 6,613,192

    Google Scholar 

  • Bajpai P, Mishra SP, Mishra OP, Kumar S, Bajpai PK, Singh S (2004a) Biochemical pulping of wheat straw. Tappi J 3(8):3–6

    CAS  Google Scholar 

  • Bajpai P, Mishra SP, Mishra OP, Kumar S, Bajpai PK (2004b) Biochemical pulping of bagasse. Biotechnol Progress 20(4):1270–1272

    Article  CAS  Google Scholar 

  • Bar-Lev SS, Kirk TK, H-m Chang (1982) Fungal treatment can reduce energy requirements for secondary refining of TMP. Tappi J 65(10):111–113

    CAS  Google Scholar 

  • Behrendt CJ, Blanchette RA (1997) Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantean. Appl Environ Microbiol 63:1995–2000

    CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Leatham GF (1988) Selection of white-rot fungi for biopulping. Biomass 1988(15):93–101

    Article  Google Scholar 

  • Blanchette RA, Leatham GF, Attridge M (1991) Biomechanical pulping with C. subvermispora. US Patent 1991; 5,055,159

    Google Scholar 

  • Blanchette RA, Akhtar M, Attridge MC (1992a) Using Simons stain to evaluate fiber characteristics of biomechanical pulps. Tappi J 75(11):121–124

    CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Eerdmans MM (1992b) Evaluating isolates of Phanerochaete chysosporium and Ceriporopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115

    Article  CAS  Google Scholar 

  • Brush TS, Farrell RL, Ho C (1994) Biodegradation of wood extractives form southern yellow pine by Ophiostoma piliferum. Tappi J 77(1):155–159

    CAS  Google Scholar 

  • Çöpür Y, Tozluoğlu A (2007) The effect of AQ and NaBH4 on bio-kraft delignification (Ceriporiopsis subvermispora) of brutia pine chips. Int Biodeterior Biodegradation 60(2):126–131

    Article  Google Scholar 

  • Dyer TJ, Ragauskas AJ (2004) Laccase: a harbinger to kraft pulping. ACS Sym Ser 889:339–362

    Article  CAS  Google Scholar 

  • Eaton DC, H-m Chang, Joyce TW (1982) Method obtains fungal reduction of the color of extraction stage Kraft bleach effluent. Tappi J 65(6):89–92

    CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. In: Pulp and paper chemistry and technology, vol 1. Walter de Gruyter Environment Canada, Berlin. Report (1988). WTC Bio-07-1988

    Google Scholar 

  • Eriksson KE (1985) Swedish developments in biotechnology related to the pulp and paper industry. Tappi J 68(7):46–55

    CAS  Google Scholar 

  • Eriksson KE, Vallander L (1980). Biomechanical pulping. In: Kirk TK, Higuchi T, Chang H-M (eds) Lignin biodegradation: microbiology, chemistry, and potential applications. CRC Press, vol II, pp 213–233

    Google Scholar 

  • Eriksson KE, Vallander L (1982) Properties of pulps from thermomechanical pulping of chips pretreated with fungi. Sven Papperstid 85:R33–R38

    CAS  Google Scholar 

  • Eriksson KE, Ander P, Henningsson B (1976) Method for producing cellulose pulp. US. Patent 1976; 3,962,033

    Google Scholar 

  • Eriksson KE, Grünewald A, Vallander L (1980) Studies of growth conditions in wood for three white-rot fungi and their cellulaseless mutants. Biotech Bioeng 22:363–376

    Article  CAS  Google Scholar 

  • Falah F, Fatriasari W, Ermawar RA, Nugroho DTA, Hermiati E (2011) Effect of corn steep liquor on bamboo biochemical pulping using Phanerochaete chrysosporium. J Ilmu dan Teknologi Kayu Tropis 9(2):111–125

    Google Scholar 

  • Farrell RA, Blanchette RA, Brush TH (1992) In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. UNI publishers, Kyoto, pp 27–32

    Google Scholar 

  • Ferraz A, Mendonc a R, Silva FT (2000) Organosolv delignification of white- and brown-rotted Eucalyptus grandis hardwood. J Chem Technol Biotechnol 75:18–24

    Article  CAS  Google Scholar 

  • Ferraz A, Guerra A, Mendonca R, Vicentim MP, Aguiar A, Masarin F, Seabra GG, Pavan PC (2007) Mill evaluation of wood chips biotreated on a 50 ton biopulping pilot plant and advances on understanding biopulping mechanisms. In: Tenth international congress on biotechnology in the pulp and paper industry, 10–15 June 2007. United States Book of Abstracts, Madison, WI, pp 23–24

    Google Scholar 

  • Ferraz A, Guerra A, Mendonca R, Masarin F, Vicentim MP, Aguiar A (2008) Technological advances and mechanistic basis for fungal biopulping. Enzyme Microbial Technol 43:178–185

    Article  CAS  Google Scholar 

  • Firth B, Backman C (1990) Comparison of microtox testing with rainbow trout (acute) and Ceriodaphnia (chronic) bioassays in mill wastewaters. Tappi J 73(12):169–174

    CAS  Google Scholar 

  • Fischer K, Messner K (1992) Reducing troublesome pitch in pulp mills by lipolytic enzymes. Tappi J 75(2):130–134

    CAS  Google Scholar 

  • Fischer K, Akhtar M, Blanchette RA, Burnes TA, Messner K, Kirk TK (1994) Reduction of resin content in wood chips during experimental biological pulping processes. Holzforschung 1994(48):285–290

    Article  Google Scholar 

  • Franco H, Freer J, Rodrıguez J, Baeza J, Elissetche JP, Mendon R (2006) Kraft pulping of Drimys winteri wood chips biotreated with Ganoderma australe. J Chem Technol Biotechnol 81:196–200

    Article  CAS  Google Scholar 

  • Garmaroody ER, Resalati H, Fardim P, Hosseini SZ, Rahnama K, Saraeeyan AR, Mirshokraee SA (2011) The effects of fungi pre-treatment of poplar chips on the kraft fiber properties. Bioresour Technol 102(5):4165–4170

    Google Scholar 

  • Giles RL, Galloway ER, Elliott GD, Parrow MW (2011) Bioresour Technol 102(17):8011–8016

    Google Scholar 

  • Giovannozzi-Sermanni G, Cappelletto PL, D’Annibale A (1997) Enzymatic pretreatment of non-woody plants for pulp and paper production. Tappi J 80(6):139–144

    CAS  Google Scholar 

  • Guerra A, Mendonc a R, Ferraz A (2002) Characterization of the residual lignins in Pinus taeda biodegraded by Ceriporiopsis subvermispora by using in situ CuO oxidation and DFRC methods. Holzforschung 56:157–160

    Article  CAS  Google Scholar 

  • Guerra A, Mendonc a R, Ferraz A (2003) Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme Microb Technol 33:12–18

    Article  CAS  Google Scholar 

  • Guerra A, Ferraz A, Lu F, Ralph J (2004) Structural characterization of lignin during Pinus taeda wood treatment with Ceriporiopsis subvermispora. Appl Environ Microbiol 70:4073–4078

    Article  CAS  Google Scholar 

  • Guerra A, Mendonc a R, Ferraz A (2005) Bio-chemimechanical pulps from Eucalyptus grandis: strength properties, bleaching, and brightness stability. J Wood Chem Technol 25:203–216

    Article  CAS  Google Scholar 

  • Guerra A, Pavan PC, Ferraz A (2006) Bleaching, brightness stability and chemical characteristics of Eucalyptus grandis-bio-TMP pulps prepared in a biopulping pilot plant. Appita J 59:412–415

    CAS  Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel woodrotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies)wood. Enzyme MicrobTechnol 34:255–263

    Article  CAS  Google Scholar 

  • Hall E, Cornacchio LA (1988) Anaerobic treatability of Canadian pulp and paper mill wastewaters. Pulp Paper Can 89:T188–T192

    Google Scholar 

  • Heden CG, Eriksson KE, Johnsrud K (1988) Japanese patent application 1988; 152/380

    Google Scholar 

  • Hernández M, Hernández-Coronado MJ, Pérez MI, Revilla E, Villar JC, Ball AS et al (2005) Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization. Holzforschung 59:173–177

    Google Scholar 

  • Hunt C, Kenealy W, Horn E, Houtman C (2004) A biopulping mechanism: creation of acid groups on fiber. Holzforschung 58:434–439

    Article  CAS  Google Scholar 

  • Jacobs-Young CJ, Venditti RA, Joyce TW (1998a) Effect of enzymatic pretreatment on the diffusion of sodium hydroxide in wood. Tappi J 81(1):260–266

    Google Scholar 

  • Jacobs-Young CJ, Vendetti RA, Joyce TW (1998b). Effect of enzyme pretreatments on conventional kraft pulping. Tappi J 81(2):143–147

    Google Scholar 

  • Jakko Poyry Inc. (1985) Multiclient report. Lindingo, Sweden: 2

    Google Scholar 

  • Johnson I, Butler R (1991) Paper mill effluents: a move to toxicity-based consents. Paper Technol 32(6):21–25

    CAS  Google Scholar 

  • Johnsrud SC, Eriksson KE (1985) Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3: new cellulase deficient strains with increased ability to degrade lignin. Appl Microbiol Biotechnol 21:320–327

    Article  CAS  Google Scholar 

  • Johnsrud SC, Fernandez N, Lopez P (1987) Properties of fungal pretreated high yield bagasse. Nordic Pulp Paper Rsch J Spec Iss 2:47–52

    Google Scholar 

  • Joyce TW, Pellinen J (1995) White rot fungi for the treatment of pulp and paper industry wastewater. Proc Tappi Environ Conf Seattle

    Google Scholar 

  • Karl W (1990) The 1990’s could be the decade for CTMP. Tappi J 73(Supplement 2000 and Beyond):90–92

    Google Scholar 

  • Kennedy KJ, McCarthy PJ, Droste RL (1992) Batch and continuous anaerobic toxicity of resin acids from chemithermomechanical pulp wastewater. J Ferm Bioeng 73(3):206–212

    Google Scholar 

  • Kirk TK (1993) Biopulping: a glimpse of the future? Madison: forest products laboratory. Res Rep FPL-RP-523

    Google Scholar 

  • Kirk TK, Akhtar M, Blanchette RA (1994) Biopulping: seven years of consortia research. In: Proceedings of TAPPI biological sciences symposium. Tappi Press, Atlanta, pp 57–66

    Google Scholar 

  • Kobe Steel (1988) Lignin degrading microorganisms having high activity and selectivity (for lignin). Japanese patent 1988; EP295063

    Google Scholar 

  • Kohler LJF, Dinus RJ, Malcolrn EV, Rudie AW, Farrell RL, Brush TS (1997) Improving softwood rnechanical pulp properties with Ophiostoma piliferum. Tappi J 80:135–140

    CAS  Google Scholar 

  • Kojima Y (1988) Inoculation of lignocellulosic materials with microbes in delignification. Japanese patent application 1988; 63/91077

    Google Scholar 

  • Lawson LR Jr, Still CN (1957) The biological decomposition of lignin—literature survey. Tappi J 40(9):56A–80A

    CAS  Google Scholar 

  • Leach JM, Thakore AN (1976) Toxic constituents in mechanical pulping effluents. Tappi J 59(2):129–132

    CAS  Google Scholar 

  • Leask RA, Kocurek MJ (1987) Mechanical Pulping. Joint Textbook Committee of the Paper Industry, Montreal

    Google Scholar 

  • Leatham GF, Myers GC (1990) A PFI mill can be used to predict biomechanical pulp strength properities. Tappi J 73(4):192–197

    CAS  Google Scholar 

  • Leatham GF, Myers GC, Wegner TH (1990a) Biomechanical pulping of aspen chips: paper strength and optical properties resulting from different fungal treatments. Tappi J 73(3):249–255

    CAS  Google Scholar 

  • Leatham GF, Myers GC, Wegner TH (1990b) Biomecanical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi J 73(5):197–200

    CAS  Google Scholar 

  • Lo SN, Liu HW, Rousseau S (1991) Characterization of pollutants at source and biological treatment of a CTMP effluent. Appita 44(2):133–138

    CAS  Google Scholar 

  • Maijala P, Kleen M, Westin C, Poppius-Levlin K, Herranen K, Lehto JH, Reponen P, Mäentausta O, Mettälä A, Hatakka A (2008) Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzyme Microbial Technol 43:169–177

    Article  CAS  Google Scholar 

  • Mardones L, Gomide J L Freer J, Ferraz A, Rodrıguez J (2006) Kraft pulping of Eucalyptus nitens wood chips biotreated by Ceriporiopsis subvermispora (2006). J Chem Technol Biotechnol 81:608–613

    Google Scholar 

  • Martinez AT, Camarero S, Guillén F (1994) Progress in biopulping of non-woody materials: Chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13:265–274

    Article  CAS  Google Scholar 

  • Masarin F, Ferraz A (2008) Evaluation of Eucalyptus grandis biopulping with Ceriporiopsis subvermispora under nonaseptic conditions. Holzforschung 62:1–7

    Article  CAS  Google Scholar 

  • Masarin F, Pavan PC, Vicentim MP, Souza-Cruz PB, Loguercio-Leite C, Ferraz A (2009) Laboratory and mill scale evaluation of biopulping of Eucalyptus grandis Hill ex Maiden with Phanerochaete chrysosporium RP-78 under non-aseptic conditions. Holzforschung 63:259–263

    Article  CAS  Google Scholar 

  • Mendonca R, Guerra A, Ferraz A (2002) Delignification of Pinus taeda wood chips treated with Ceriporiopsis subvermispora for preparing high-yield kraft pulps. J Chem Technol Biotechnol 77:411–418

    Article  CAS  Google Scholar 

  • Messner K, Koller K, Wall MB (1997) Fungal treatment of wood chips for chemical pulping. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 385–419

    Google Scholar 

  • Myers GC, Leatham GF, Wegner TH (1988) Fungal pretreatment of aspen chips improves strength of refiner mechanical pulp. Tappi J 71(5):105–108

    CAS  Google Scholar 

  • Nambisan P, Koshy J (2011). Biopulping of Paddy Straw by Pleurotus eous. Advanced Biotech 11(01)

    Google Scholar 

  • Nishida T (1989) Lignin biodegradation by wood-rotting fungi. V. A new method for evaluation of the ligninolytic activity of lignin-degrading fungi. Mokuzai Gakkaishi 35(7):675–677

    CAS  Google Scholar 

  • Nishida T, Kashino Y, Mimura A (1988) Lignin biodegradation by wood-rotting fungi. 1. Screening of lignin-degrading fungi. Mokuzai Gakkaishi 1988(34):530–536

    Google Scholar 

  • Oriaran TP, Labosky P Jr, Blankenhorn PR (1990) Kraft pulp and papermaking properties of Phanerochaete chrysosporium degraded aspen. Tappi J 73(7):147–152

    CAS  Google Scholar 

  • Oriaran TP, Labosky P Jr, Blankenhorn PR (1991) Kraft Pulp and papermaking properties of Phanerochaete chrysosporium degraded red oak. Wood Fiber Sci 23:316–327

    CAS  Google Scholar 

  • Otjen L, Blanchette R, Effland M (1987) Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41:343–349

    Article  CAS  Google Scholar 

  • Patel RN, Thakker GD, Rao KR (1994) Potential use of a white-rot fungus Antrodiella sp. RK1 for biopulping. J Biotechnol 36:19–23

    Article  CAS  Google Scholar 

  • Petit-Conil M, Semar S, Niku-Paavola M-L, Sigoillot JC, Asther M, Anke H (2002) Potential of laccases in softwood-hardwood high-yield pulping and bleaching. Prog Biotechnol 21:61–71

    Article  Google Scholar 

  • Reid ID, Bourbolnnais R, Paice MG (2010) Biopulping and biobleaching. In: Heitner, C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry (Chapter 15), pp 521–554

    Google Scholar 

  • Sabharwal HS, Akhtar M, Blanchette RA (1994) Biomechanical pulping of kenaf. Tappi J 77(12):105–112

    CAS  Google Scholar 

  • Sabharwal HS, Akhtar M, Blanchette RA (1995) Refiner mechanical and biomechanical pulping of jute. Holzforschung 1995(49):537–544

    Article  Google Scholar 

  • Sachs IB, Leatham GF, Myers GC (1989) Biomechanical pulping of aspen chips by Phanerochaete chrysosporium: fungal growth pattern and effects on wood cell walls. Wood Fiber Sci 21:331–342

    CAS  Google Scholar 

  • Sachs IB, Leatham GF, Myers GC (1990) Distinguishing characteristics of biomechanical pulp. Tappi J 73(9):249–254

    CAS  Google Scholar 

  • Sachs IB, Blanchette RA, Cease KR (1991) Effect of wood particle size on fungal growth in a model biomechanical pulping process. Wood Fiber Sci 23:363–375

    CAS  Google Scholar 

  • Schwanninger M, Hinterstoisser B, Gradinger C, Messner K, Fackler K (2004) Examination of spruce wood degradation by Ceriporiopsis subvermispora using near and mid infrared spectroscopy. J Near Infrared Spectrosc 12:397–409

    Article  CAS  Google Scholar 

  • Scott GM, Akhtar M, Lentz MJ (1997) Engineering, scale-up, and economic aspects of fungal pretreatment of wood chips. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 341–383

    Google Scholar 

  • Scott GM, Akhtar M, Swaney RE, Houtman CJ (2002) Recent developments in biopulping technology at Madison, WI. In: Viikari L, Lantto R (eds) Progress in biotechnology 21. Elsevier, Amsterdam, pp 61–71

    Google Scholar 

  • Selvam K, Saritha KP, Swaminathan K, Manikandan M, Rasappan K, Chinnaswamy P (2006) Pretreatment ofwood chips and pulps with Fomes lividus and Trametes versicolor to reduce chemical consumption in paper industries. Asian J Microbiol Biotechnol Environ Sci 8:771–776

    CAS  Google Scholar 

  • Setliff EC, Marton R, Granzow SG (1990) Biomechanical pulping with white-rot fungi. Tappi J 73(8):141–147

    CAS  Google Scholar 

  • Shukla OP, Rai UN, Subramanian SV (2004) Biopulping and biobleaching. An energy and environment saving technology for Indian pulp and paper industry. Environ News Lett (ISEB Lucknow) 10(2)

    Google Scholar 

  • Sikora A, Yahaya M, Su S (2014) Biopulping by Ceriporiopsis subvermispora towards pineapple leaf fiber (PALF) paper properties. Adv Mater Res 1043:180–183

    Article  Google Scholar 

  • Singh P, Sulaiman O, Hashim R, Rupani PF, Peng LC (2010) Biopulping of lignocellulosic material using different fungal species: a review. Rev Environ Sci Bio Technol 9(2):141–151

    Article  CAS  Google Scholar 

  • Singhal V, Kumar A, Rai JP (2005) Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium. J Environ Biol 4:525–529

    Google Scholar 

  • Springer AM (1986) Industrial environmental control. Pulp and paper industry. Wiley-Interscience, New York

    Google Scholar 

  • Sykes M (1993) Bleaching and brightness stability of aspen biomechanical pulps. Tappi J 76(11):121–126

    CAS  Google Scholar 

  • Sykes M (1994) Environmental compatibility of effluents of aspen biomechanical pulps. Tappi J 77(1):160–166

    CAS  Google Scholar 

  • Vaheri M, Salama N, Ruohoniemi K (1991) Procedure for the production of pulp. Eur Pat Appl EP429422. 29 May 1991

    Google Scholar 

  • Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28(1):21–32. https://doi.org/10.1002/btpr.727

    Article  CAS  Google Scholar 

  • Wall MB, Cameron DC, Lightfoot EN (1993) Biopulping process design and kinetics. Biotech Adv 11:645–662

    Article  CAS  Google Scholar 

  • Wall MB, Brecker J, Noel Y et al (1994) Cartapip 97® treatment of wood chips to improve chemical pulping efficiency. Proceedings of Tappi biological sciences symposium, Madison, p 67

    Google Scholar 

  • Wall MB, Stafford G, Noel Y (1996) Treatment with Ophiostoma piliferum improves chemical pulping efficiency. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Recent advances in applied and fundamental research. Facultas-Universitatsverlag, Vienna, pp 205–210

    Google Scholar 

  • Wegner TH, Myers GC, Leatham GF (1991) Biological treatments as an alternative to chemical pretreatment in high-yield wood pulping. Tappi J 74(3):189–193

    CAS  Google Scholar 

  • Welander T (1988) An anaerobic process for treatment of CTMP effluent. Wat Sci Technol 20:143–147

    CAS  Google Scholar 

  • Widsten P, Kandelba A (2008) Laccase applications in the forest products industry: a review. Enzyme Microbial Technol 42(2008):293–307

    Article  CAS  Google Scholar 

  • Wolfaardt JF, Bosman JL, Jacobs A (1996) Bio-kraft pulping of softwood. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Recent advances in applied and fundamental research. Facultas-Universitatsverlag, Vienna, pp 211–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2018). Biopulping. In: Biotechnology for Pulp and Paper Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7853-8_8

Download citation

Publish with us

Policies and ethics