Bioconversion of Hemicelluloses



Hemicellulose comprises about 25–30% of the lignocellulosic biomass and is the second most abundant polysaccharide after cellulose. These are heterogeneous polymer of pentoses hexoses and sugar acids. Xylans is the major component of hemicellulose and are heteropolysaccharides with homopolymeric backbone chains of 1,4 linked β-d-xylopyranose units. In recent years, bioconversion of hemicelluloses has received much attention because of its practical applications in various agro-industrial processes. This chapter presents bioconversion of hemicelluloses to value-added products.


Hemicellulose Cellulose Biomass Bioconversion  Biorefinery Biofuels Pretreatment Saccharification Fermentation Ethanol, Furfural, Xylitol 2,3-butanediol Organic acids Butanol Biohydrogen Chitosan Xylooligosaccharides Ferulic acid Vanillin Fermentation substrate Enzymes Value-added product 


  1. Alriksson B, Horváth IS, Sjöede A, Nilvebrant NO, Jönsson LJ (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121–124:911–922CrossRefGoogle Scholar
  2. Amidon TE, Francis R, Scott GM, Bartholomew J, Ramarao BV, Wood CD (2007) Pulp and pulping processes from an integrated forest biorefinery. Appl. No. PCT/US2005/013216Google Scholar
  3. Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194CrossRefGoogle Scholar
  4. Bajpai P (2009) In: Schaechter M, Lederberg J (eds) Xylanases in “Encyclopedia of Microbiology, Third edn” vol 4. Academic Press, San Diego, California, USA, pp 600–612Google Scholar
  5. Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production. SpringerBr Gr Chem Sustain. Google Scholar
  6. Bajpai P (2013) Biorefinery in the pulp and paper industry. Elsevier Inc, UK, p 114Google Scholar
  7. Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by a newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326CrossRefGoogle Scholar
  8. Bhosale SH, Mala BR, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300Google Scholar
  9. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, Cambridge, pp 29–51Google Scholar
  10. Bonnina E, Brunel M, Gouy Y, Lesage-Meessen L, Asther M, Thibault JF (2001) Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzyme Microb Technol 28:70–80CrossRefGoogle Scholar
  11. Brentner L, Peccia J, Zimmerman J (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44:2243–2254CrossRefGoogle Scholar
  12. Cao G, Ren N, Wang A, Lee DL, Guo W, Liu B, Feng L, Zhao Q (2009) Acidhydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 34:7182–7188CrossRefGoogle Scholar
  13. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370CrossRefGoogle Scholar
  14. Chiang E, Knight SG (1960) Xylose metabolism bv cell-free extract of Penicillium chrysosporium. Nature 188:79–81CrossRefGoogle Scholar
  15. Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 12:21–38CrossRefGoogle Scholar
  16. Christopher L (2012) Adding value prior to pulping: bioproducts from hemicellulose. In: Okia CA (ed) Global perspectives on sustainable forest management book. ISBN 978-953-51-0569-5.
  17. Di Gioia D, Sciubba L, Setti L, Luziatelli F, Ruzzi M, Zanichelli D (2007) Production of biovanillin from wheat bran. Enzyme Microb Technol 41:498–505CrossRefGoogle Scholar
  18. Dibner JJ, Butin P (2002) Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poultry Res 11:453–463CrossRefGoogle Scholar
  19. dos Santos WD, Ferrarese MLL, Ferrarese-Filho O (2008a) Ferulic acid: an allelochemical troublemaker. Funct Plant Sci Biotechnol 2:47–55Google Scholar
  20. dos Santos WD, Ferrarese MLL, Nakamura C, Mourão K, Mangolin C, Ferrarese-Filho O (2008b) Soybean (Glycine max) root lignification induced by Ferulic acid. The possible mode of action. J Chem Ecol 34:1230–1241CrossRefGoogle Scholar
  21. Fazary A, Ju Y (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin 37:811–828CrossRefGoogle Scholar
  22. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139(1993):187–194CrossRefGoogle Scholar
  23. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:775–800CrossRefGoogle Scholar
  24. Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107CrossRefGoogle Scholar
  25. Horváth IS, Sjoede A, Alriksson B, Jönsson LJ, Nilvebrant NO (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044CrossRefGoogle Scholar
  26. Hyvonen L, Koivistoinen P (1982) Fructose in food systems. In: Birch GG, Parker KJ (eds) Nutritive sweeteners. Applied Science Publishers, London, UK & New Jersey, USA, pp 133–144Google Scholar
  27. Industry Canada (2007) Towards a technology roadmap for Canadian forest biorefineries. ReportGoogle Scholar
  28. Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 34:3659–3670CrossRefGoogle Scholar
  29. John RP, Nampoothiri M, Pandey A (2006) Solid state fermentation for lactic acid production from agro waste using Lactobacillus delbrueckii. Process Biochem 41:759–763CrossRefGoogle Scholar
  30. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen, biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568CrossRefGoogle Scholar
  31. Kim KH (2005) Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. J Sci Food Agric 85(14):2461–2467CrossRefGoogle Scholar
  32. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26CrossRefGoogle Scholar
  33. Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101:7789–7796CrossRefGoogle Scholar
  34. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24(3/4):151–159CrossRefGoogle Scholar
  35. Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault JF, Buleon A, Roller M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 102–103(2002):141–153CrossRefGoogle Scholar
  36. Lesage-Meessen L, Stentelaire C, Lomascolo A, Couteau D, Asther M, Moukha S (1999) Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J Sci Food Agric 79:487–490CrossRefGoogle Scholar
  37. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacs JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer Academic/Plenum Publishers, New York, USA, pp 307–340CrossRefGoogle Scholar
  38. Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylose derived biochemical. Biofuels, Bioprod Biorefin 5:438–454CrossRefGoogle Scholar
  39. Marchal R, Rebeller M, Vandecasteele JP (1984) Direct bioconversion of alkalipretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnol Lett 6(1984):523–528CrossRefGoogle Scholar
  40. Menon V, Prakash G, Rao M (2010) Value added products from hemicelluloses: biotechnological perspective. Glob J Biochem 1(1):36–67Google Scholar
  41. Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb Technol 36(2–3):294–300CrossRefGoogle Scholar
  42. Nasib Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922CrossRefGoogle Scholar
  43. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576CrossRefGoogle Scholar
  44. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861CrossRefGoogle Scholar
  45. Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  46. Paiva L, Goldbeck R, Santos WD, Squina F (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49:395–411CrossRefGoogle Scholar
  47. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates, I: inhibition and detoxification. Bioresour Technol 74(1):17–24CrossRefGoogle Scholar
  48. Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme Microb Technol 10:660–668CrossRefGoogle Scholar
  49. Paster M, Pellegrino JL, Carole TM (2003) Industrial bioproducts: today and tomorrow. Energetic, Incorporated. 86 ppGoogle Scholar
  50. Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 33:5256–5265CrossRefGoogle Scholar
  51. Persson P, Larsson S, Jönsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thörneby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79(6):694–700CrossRefGoogle Scholar
  52. Qureshi N, Liu S, Ezeji TC (2013) Cellulosic Butanol production from agricultural biomass and residues: recent advances in technology. In: Lee J (ed) Adv Biofuels Bioprod. Springer, New York, NYGoogle Scholar
  53. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465CrossRefGoogle Scholar
  54. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2(1):55–65CrossRefGoogle Scholar
  55. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  56. Saha B, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington. D.C., pp 307–319Google Scholar
  57. Se KK, Niranjan R (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368CrossRefGoogle Scholar
  58. Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198CrossRefGoogle Scholar
  59. Sevda S, McClureb SJ (2004) Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 56:1467–1480CrossRefGoogle Scholar
  60. Silva HSRC, dos Santos KSCR, Ferreira EI (2006) Chitosan: hydrossoluble derivatives, pharmaceutical applications and recent advances. Quim Nova 29:776–785CrossRefGoogle Scholar
  61. Silva SS, Felipe GA, Mancilha IM (1998) Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts: a review. Appl Biochem Biotechnol 70–72:331–339Google Scholar
  62. Singh A (1995) Microbial production of acetone and butanol. In: Microbial Pentose utilization current applications in biotechnology. Elsevier Science, New York, pp 197–220Google Scholar
  63. Soni BK, Das K, Ghose TK (1982) Bioconversion of agro-wastes into acetone butanol. Biotechnol Lett 4:19–22CrossRefGoogle Scholar
  64. Sun Z, Liu S (2010) Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenergy, pp 1–9Google Scholar
  65. Sunil AA, Nadagouda NM, Tejraj M (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Controlled Release 100:5–28CrossRefGoogle Scholar
  66. Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171CrossRefGoogle Scholar
  67. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36(11):4659–4665CrossRefGoogle Scholar
  68. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000a) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708CrossRefGoogle Scholar
  69. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000b) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90(4):374–380CrossRefGoogle Scholar
  70. Tai C, Li S, Xu Q, Ying H, Huang H, Ouyang P (2010) Chitosan production from hemicellulose hydrolysate of corn straw: impact of degradation products on Rhizopus oryzae growth and chitosan fermentation. Lett Appl Microbiol 51:278–284CrossRefGoogle Scholar
  71. Thibault JF, Asther M, Ceccaldi BC, Couteau D, Delattre M, Duarte JC, Faulds CB, Heldt-Hansen HP, Kroon P, Lesage-Meessen L, Micard V, Renard CMGC, Tuohy M, Van Hulle S, Williamson G (1998) Fungal bioconversion of agricultural by-products to vanillin. Lebensm Wiss Technol 31:530–536CrossRefGoogle Scholar
  72. Thorp B, Raymond D (2005) Forest biorefinery could open door to bright future for P&P industry. PaperAge 120(7):16–18Google Scholar
  73. Thorp B (2005) Transition of mills to biorefinery model creates new profit streams. Pulp Pap, 35–39Google Scholar
  74. Tolan JS (2003) Conversion of cellulosic biomass to ethanol using enzymatic hydrolysis. In: 226th American Chemical Society National Meeting Abstracts, New YorkGoogle Scholar
  75. Torres BR, Aliakbariana B, Torrea P, Peregoa P, Domínguezb JM, Zilli M, Converti A (2009) Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB1. Enzyme Microb Technol 44:154–158CrossRefGoogle Scholar
  76. US Department of Energy (2004) Top value added chemicals from biomass. Volume 1—results from screening for potential candidates from sugars and synthesis gas, 67+ ppGoogle Scholar
  77. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515CrossRefGoogle Scholar
  78. Werpy T, Petersen G (2004) Top value-added chemicals from biomass. Volume I: results of screening for potential candidates from sugars and synthesis gas. Pacific NorthProduct west National Laboratory, August 2004.
  79. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295CrossRefGoogle Scholar
  80. Wright JD, Power AJ (1987) Comparative technical evaluation of acid hydrolysis processes for conversion of cellulose to alcohol. Energy from Biomass and Wastes, pp 949–971Google Scholar
  81. Wyman CE, Goodman BJ (1993) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39–40:41–59CrossRefGoogle Scholar
  82. Xu Z, Wang Q, Wang P, Cheng G, Ji Y, Jiang Z (2007) Production of lactic acid from soybean stalk hydrolysate with Lactobacillus sake and Lactobacillus casei. Proc Biochem 42:89–92CrossRefGoogle Scholar
  83. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34CrossRefGoogle Scholar
  84. Zheng L, Zhenga P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98:1115–1119CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Pulp and Paper ConsultantKanpurIndia

Personalised recommendations