Skip to main content

Integrated Forest Biorefinery

  • Chapter
  • First Online:
Biotechnology for Pulp and Paper Processing

Abstract

The development of an integrated forest biorefinery (IFBR) would enable the industry to increase its revenue by producing bio-energy and new biomaterials in addition to traditional wood, pulp, and paper products. The IFBR concept also addresses the societal need to use renewable resources rather than fossil fuels to produce commodity products, liquid fuels, and electricity. The initial visualized IFBR would be based on sulfur-free, alkaline pulping of hardwood with an alkaline hemicellulose extraction step prior to pulping and spent pulping liquor gasification and lignin precipitation after pulping. New products from an IFBR based on alkaline pulping include electric power, new wood composites , liquid fuel, ethanol , chemicals, and polymers . Pre-extraction generates a feed stream for new bioproducts , while decreasing alkali consumption, increasing delignification rate, and reducing black liquor load. Black liquor gasification and/or lignin precipitation are an integral part of the IFBR with the synthesis gas and precipitated lignin being the feed for liquid fuel and carbon fibers, respectively. The additional energy requirements of the IFBR would be met by gasification/combustion of waste biomass . The key to the successful implementation of the forest biorefinery is to identify possible products that can be economically produced by a pulp and paper mill. Process integration tools can be used to identify these products. A roadmap can be developed once the products have been identified. The successful implementation of the forest biorefinery will likely be mill specific, and will in many cases require strategic collaborations with experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Kaushik N, Biswas S (2014) Derivatives and applications of lignin—an insight. SciTech J 01(07). ISSN 2347-7318, ISSN 2348-2311 (Online)

    Google Scholar 

  • Alriksson B, Horváth IS, Sjöede A, Nilvebrant NO, Jönsson LJ (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121–124:911–922

    Article  Google Scholar 

  • Amidon TE, Francis R, Scott GM, Bartholomew J, Ramarao BV, Wood CD (2007). Pulp and pulping processes from an integrated forest biorefinery. Appl. No. PCT/US2005/013216

    Google Scholar 

  • Anon (2007) LignoBoost does business with lignin fuel. Beyond 2:4–5

    Google Scholar 

  • Axegård P (1999) Kretsloppsanpassad massafabrik-Slutrapport, KAM 1 1996-1999, KAMrapport A31, Stiftelsen för Miljöstrategisk forskning

    Google Scholar 

  • Axegård P (2005) The future pulp mill—a biorefinery. 1st international biorefinery workshop, Washington DC

    Google Scholar 

  • Axegard P (2006a) Lignin removal from black liquor for increased energy efficiency and pulp capacity increase, Energy management for pulp and papermakers, Budapest, Hungary, 16–18 Oct, Paper 12, 31 pp

    Google Scholar 

  • Axegård P (2006b) Presentation “Utilization of black liquor and forestry residues in a pulp mill biorefinery” at the forest based sector technology platform conference, Lahti, Finland, 22–23 Nov

    Google Scholar 

  • Axegard P (2007a) Lignin from black liquor: a valuable fuel and chemical feedstock. In: Biorefining for the pulp and paper industry, Stockholm, Sweden, 10–11 Dec, 34 pp

    Google Scholar 

  • Axegard P (2007b) The kraft pulp mill as a biorefinery. In: 3rd ICEP international colloquium on Eucalyptus Pulp, Belo Horizonte, Brazil, 4–7 Mar, 6 pp

    Google Scholar 

  • Axegard P, Backlund B, Tomani P (2007) The pulp mill based biorefinery. In: Pulp paper 2007 conference. Biomass conversions, Helsinki, Finland, 5–7 June, pp 19–26

    Google Scholar 

  • Bajpai P (2008) Chemical recovery in pulp and paper making. PIRA Int U.K. 166 pages

    Google Scholar 

  • Bertaud F, Vitrac X, Dudonne S, Coutiere P, Petit-conil M (2012) Investigation of industrial wood residues as new resources of bio-active ingredients. In: Proceedings of the 12th EWLP, Helsinki, Finland, 27th–30th Aug

    Google Scholar 

  • Bozell JJ, Black SK, Myers M (1995) Clean fractionation of lignocellulosics—a new process for preparation of alternative feedstocks for the chemical industry. In: 8th international symposium on wood and pulping chemistry, Helsinki, Finland, pp 697–704

    Google Scholar 

  • Brown CA, Gorog JP, Leary R, Abdullah Z (2004) The chemrec black liquor gasifier at new bern—a status report. In: International chemical recovery conference, Charleston, SC, USA, 6–10 June 2004

    Google Scholar 

  • Brown C, Landälv I (2001) The chemrec black liquor recovery technology—a status report. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute acid wood hydrolysate. J Biosci Bioeng 98(2):122–125

    Article  CAS  Google Scholar 

  • Chambost V, Stuart PR (2007) Selecting the most appropriate products for the forest biorefinery. Ind Biotechnol 3(2):112–119

    Article  Google Scholar 

  • Closset G (2004) Advancing the forest biorefinery. Presentation at forest products techno-business forum, Atlanta, GA, 26–27 Oct

    Google Scholar 

  • Connor E (2007) The integrated forest biorefinery: the pathway to our bio-future. In: International chemical recovery conference: efficiency and energy management, Quebec City, QC, Canada, 29 May–1 June 2007, pp 323–327

    Google Scholar 

  • Christopher LP (2013) Integrated forest biorefineries: current state and development potential Chapter 8. In: Christopher LP (ed) Integrated forest biorefineries? Challenges and opportunities. RSC green chemistry series. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Christiansen G (2015) Important lessons learned during the commercialisation of the LignoBoost process. In: TAPPI 2015 international bioenergy and bioproducts conference 28–30, Oct 2015, Atlanta, GA

    Google Scholar 

  • Cunningham RL, Carr ME, Bagby MO (1986) Hemicellulose isolation of annual plants. In: Biotechnology and bioengineering symposium, no 17, symposium biotechnology for fuels and chemicals (Gatlinburg) 8th, 13–16 May 1986, pp 159–168

    Google Scholar 

  • DeCarrera R (2006) Quarterly technical progress report 20 demonstration of black liquor gasification at big Island. Report 40850R20. http://www.gp.com/containerboard/mills/big/pdf/rpt40850R20.pdf (06-04-28)

  • Durai-Swamy K, Mansour MN, Warren DW (1991) Pulsed combustion process for black liquor gasification. U.S. DOE Report DOE/CE/40893-T1 (DE92003672)

    Google Scholar 

  • Eckert CA, Liotta CL, Bush D, Brown J, Hallett J (2004) Sustainable reactions in tunable solvents. J Phys Chem B 108:18108–18118

    Article  CAS  Google Scholar 

  • Eckert CA, Bush D, Brown JS, Liotta CL (2000) Tuning solvents for sustainable technology. Ind Eng Chem Res 39(12):4615–4621

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadova Z, Kaucurakova M, Antal M (1994) Quaternized xylans: synthesis and structural characterization. Carbohyd Polym 24:301–308

    Article  CAS  Google Scholar 

  • Farmer MC (2005) The adaptable integrated biorefinery for existing pulp mills. In: Presentation at TAPPI engineering, pulping, and environmental conference, Philadelphia, PA, 28–31 Aug

    Google Scholar 

  • Farmer M, Sinquefield S (2003) An external benefits study of black liquor gasification. Final report, Georgia Institute of Technology, 15 June 2003

    Google Scholar 

  • Frisell H (2008) Breakthrough for new Swedish environmental technology. Dagens Ind 33(69):26

    Google Scholar 

  • Fitzpatrick SW (1997) US patent 5,608,105

    Google Scholar 

  • Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohyd Polym 43:367–374

    Article  CAS  Google Scholar 

  • Gellersted P, Tomani GP, Axegard P, Backlund B (2013) Lignin recovery and lignin-based products, Chapter 8. In: Christopher LP (ed) Integrated forest biorefineries? Challenges and opportunities. RSC green chemistry series. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Gullichsen J, Lindeberg H (1999) By-products of chemical pulping, in chemical pulping. In: Gullichsen J, Paulapuro H (eds) Papermaking science and technology, vol B. Tappi Press, Heskinki

    Google Scholar 

  • Griffith WL, Compere AL, Leitten CF, JT Shaffer JT (2003) Low-cost, lignin-based carbon fiber for transportation applications. In: International SAMPE technical conference, vol 35, pp 142–149

    Google Scholar 

  • Grace TM, Timmer WM (1995) A comparison of alternative black liquor recovery technologies. In: Proceedings of international chemical recovery conference, Toronto, pp B269–B275

    Google Scholar 

  • Hashimoto T, Hashimoto K (1975) Studies on the utilization of xylan and glucomannan in woods. i. purification and separation. Yakugaku Zasshi 95(10):1239–1244

    Article  CAS  Google Scholar 

  • Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Julian L, Overend RP (1986) Generalised correlations for the aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650

    Article  CAS  Google Scholar 

  • Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass

    Google Scholar 

  • Horváth IS, Sjoede A, Alriksson B, Jönsson LJ, Nilvebrant NO (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044

    Article  Google Scholar 

  • Jain RK, Sjostedt M, Glasser WG (2000) Thermoplastic xylan derivatives with propylene oxide. Cellulose 7(4):319–336

    Google Scholar 

  • Katofsky R, Consonni S, Larson ED (2003) A cost-benefit analysis of black liquor gasification combined cycle systems. Proceedings of TAPPI fall technical conference: engineering, Pulping & PCE&I, Chicago, 22 pp

    Google Scholar 

  • Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920

    Article  CAS  Google Scholar 

  • Kignell JE (1989) Process for chemicals and energy recovery from waste liquors. U.S. Patent No. 4,808,264

    Google Scholar 

  • Kim KH (2005) Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. J Sci Food Agr 85(14):2461–2467

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  Google Scholar 

  • Kubikova J, Zemann A, Krkoska P, Bobleter O (1996) Hydrothermal pretreatment of wheat straw for the production of pulp and paper. Tappi J 79:163–169

    CAS  Google Scholar 

  • Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    Article  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934

    Article  CAS  Google Scholar 

  • Larsen E, Kreutz T, Consonni S (1998) Performance and preliminary economics of black liquor gasification combined cycles for a range of kraft pulp mill sizes. In: International chemical recovery conference, Tampa, FL, USA, vol 2, 1–4 June 1998, pp 675–692

    Google Scholar 

  • Larson ED, McDonald GW, Yang W, Frederick WJ, Iisa K, Kreutz TG, Malcolm EW, Brown CA (2000) A cost-benefit assessment of BLGCC technology. TAPPI J 83(6):1–15

    Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Tech 24(3/4):151–159

    Article  CAS  Google Scholar 

  • Larsen E, Consonni S, Katofsky R (2003) A cost-benefit assessment of biomass gasification power generation in the pulp and paper industry. Final report, Princeton Environmental Institute, 8 Oct 2003

    Google Scholar 

  • Lazzaroni MJ, Bush D, Brown JS, Eckert CA (2005) High pressure vapor and liquid equilibria of some carbon dioxide and organic binary systems. J Chem Eng Data 50(1):60–65

    Article  CAS  Google Scholar 

  • Lesutis HP, Gläser R, Griffith K, Liotta CL, Eckert CA (2001) Near critical water: a benign medium for catalytic reactions. Ind Eng Chem Res 40:6063–6067

    Article  Google Scholar 

  • Lennholm B (2007) Lignin from the pulp mills’ black liquor: new biofuel with promising potential, Nord Papperstidn 6:16

    Google Scholar 

  • Li X, Simonsen J, Li K (2004) Wood dissolution and the regeneration of its components using ionic liquids. In: 227th American chemical society national meeting abstracts. Anaheim, California

    Google Scholar 

  • Lindblom M (2003) An overview of chemrec process concepts. In: 6th international colloquium on black liquor combustion and gasification, Park City, Utah, USA, 13–16 May 2003

    Google Scholar 

  • Lindblom M (2006) Chemrec pressurized black liquor gasification—status and future plans. In: 7th international colloquium on black liquor combustion and gasification, Jyväskylä, Finland, 31 July–2 Aug 2006

    Google Scholar 

  • Lignin market—global industry analysis, size, share, growth, trends and forecast, 2013–2019, Mar 2014. https://www.transparencymarketresearch.com

  • Lora JH, Abächerli A, Bono P, Lepifre S (2009) Green value SA, Lausanne, Switzerland. Utilization opportunities for bioenergy lignins, International Lignin Institute, Switzerland

    Google Scholar 

  • Lora JH, Wayman M (1978) Delignification of hardwoods by autohydrolysis and extraction. Tappi J 61:47–50

    CAS  Google Scholar 

  • Lundqvist J, Jacobs A, Palm M, Zacchi G, Dahlman O, Stålbrand H (2002) Characterization of galactoglucomannan extracted from spruce (picea abies) by heat-fractionation at different conditions. Carbohyd Polym 51(2):203–211

    Article  Google Scholar 

  • Lu J, Lazzaroni MJ, Hallett JP, Bommarius AS, Liotta CL, Eckert CA (2004) Tunable solvents for homogeneous catalyst recycle. Ind Eng Chem Res 43(7):1586–1590

    Article  CAS  Google Scholar 

  • Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 121–124:765–777

    Article  Google Scholar 

  • Mansour MN, Steedman WG, Durai-Swamy K, Kazares RE, Raman TV (1992) Chemical and energy recovery from black liquor by steam reforming. In: International chemical recovery conference, Seattle, WA, USA, 7–11 June 1992

    Google Scholar 

  • Mansour MN, Durai-Swamy K, Aghamohammadi B (1993) Pulsed combustion process for black liquor gasification. Second annual report U.S. DOE report DOE/CE/40893-T2 (DE94002668)

    Google Scholar 

  • Mansour MN, Durai-Swamy K, Warren D W (1997) Endothermic spent liquor recovery process. U.S. patent no 5,637,192

    Google Scholar 

  • Martin N, Anglani N, Einstein D, Khrushch M, Worrell E, Price LK (2000) Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry, report, Ernest O. Lawrence Berkeley National Laboratory, July 2000

    Google Scholar 

  • Mckeough P (2003) Evaluation of potential improvements to BLG technology. Colloquium of black liquor combustion and gasification, Park City, Utah, 12 pp

    Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb Tech 36(2–3):294–300

    Article  CAS  Google Scholar 

  • Middleton T (2006) Steam reforming technology at the Norampac Trenton mil, presentation at IEA meeting, annex XV black liquor gasification, Washington, NC, USA, 20–22 Feb 2006

    Google Scholar 

  • Montréal Workshop on Bio-refineries (2005) Capturing Canada’s Natural Advantage, Montréal, QC, Nov 21

    Google Scholar 

  • Molin U, Teder A (2002) Importance of cellulose/hemicellulose-ratio for pulp strength. Nord Pulp Pap Res 17(1):14–19, 28

    Google Scholar 

  • Moens L, Khan N (2003) Application of room-temperature ionic liquids to the chemical processing of biomass-derived feedstocks. NATO Sci Ser II: Math Phys Chem 92:157–171

    CAS  Google Scholar 

  • Newport DG, Rockvam I, Rowbotton R (2004) Black liquor steam reformer start-up at Norainpac. In: Proceedings of TAPPI international chemical recovery conference, South Carolina

    Google Scholar 

  • Neumann M (2008) New uses for lignin in the biorefinery of the future. Nord Papp Massa 1:42–43

    Google Scholar 

  • Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    Article  Google Scholar 

  • Nilsson LJ, Larson ED, Gilbreath KR, Gupta A (1995) Energy efficiency and the pulp and paper industry. ACEEE, Washington, DC/Berkeley, CA

    Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998

    Article  CAS  Google Scholar 

  • Nolen SA, Liotta CL, Eckert CA, Gläser R (2003) The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed organic synthesis. Green Chem 663–669

    Google Scholar 

  • Öhman F (2006) Precipitation and separation of lignin from kraft black liquor. PhD-thesis, Chalmers Technical University, Gothenburg, Sweden

    Google Scholar 

  • Page DH, Seth RS (1985) Strength and chemical composition of wood pulp fibers. in: The 8th fundamental research symposium, Oxford, UK, pp 77–91

    Google Scholar 

  • Palm M, Zacchi G (2003) Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 4(3):617–623

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates, I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    Google Scholar 

  • Persson P, Larsson S, Jönsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thörneby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79(6):694–700

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotech 2(1):55–65

    Article  CAS  Google Scholar 

  • Rodden G (2007) Lignoboost is proving its worth: Wermland paper is in the forefront of biofuel development thanks to an agreement with STFI-Packforsk. Pulp Pap Int 49(8):26–28

    Google Scholar 

  • Rockvam LN (2001) Black liquor steam reforming and recovery commercialization. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Scott RW (1989) Influence of cations and borate on the alkali extraction of xylan and glucomannan from pine pulps. J Appl Polym Sci 38(5):907–914

    Article  CAS  Google Scholar 

  • Schönberg C, Oksanen T, Suurnäkki A, Kettunen H, Buchert J (2001) The importance of xylan for the strength properties of spruce kraft pulp fibers. Holzforschung 55(6):639–644

    Article  Google Scholar 

  • Senthilkumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges. J Sci Ind Res 64(11):845–853

    CAS  Google Scholar 

  • Sreenath HK, Jeffries TW (1999) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72(3):253–260

    Article  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Sricharoenchaikul V (2001) Fate of carbon-containing compounds from gasification of kraft black liquor with subsequent catalytic conditioning of condensable organics. PhD dissertation, Georgia Institute of Technology

    Google Scholar 

  • Stigsson L (1998) Chemrec black liquor gasification. In: International chemical recovery conference, Tampa, Florida, USA, 1–4 June 1998

    Google Scholar 

  • Stuart P (2006) Forest biorefinery. Pulp Pap Can. Paperweek International in Montreal

    Google Scholar 

  • Tucker P (2002) Changing the balance of power. Solutions 85(2):34–38

    Google Scholar 

  • Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmentally preferable uses for biomass resources—stage 1 report: identification of feedstock-to-product threads. Report, Envirochem Services Inc., North Vancouver, BC

    Google Scholar 

  • Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36(11):4659–4665

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000a) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000b) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90(4):374–380

    Article  CAS  Google Scholar 

  • Thorp B (2005a) Transition of mills to biorefinery model creates new profit streams. Pulp Pap 35–39

    Google Scholar 

  • Thorp B (2005b) Biorefinery offers industry leaders business model for major change. Pulp Pap 79(11):35–39

    CAS  Google Scholar 

  • Thorp B, Raymond D (2005) Forest biorefinery could open door to bright future for P&P industry. PaperAge 120(7):16–18

    Google Scholar 

  • Thorp BA, Thorp BA, Murdock-Thorp LD (2008) A compelling case for integrated biorefineries. http://www.epoverviews.com/oca/Compellingcaseforbiorefineries.pdf

  • Tolan JS (2003) Conversion of cellulosic biomass to ethanol using enzymatic hydrolysis. 226th American chemical society national meeting abstracts, New York, New York

    Google Scholar 

  • van Heiningen A (2006) Converting a kraft pulp mill into an integrated biorefinery. Pulp Pap Can 107(6):T141–T146

    Google Scholar 

  • Vakkilainen EK, Kankkonen S, Suutela J (2008) Advanced efficiency options: increasing electricity generating potential from pulp mills. Pulp Pap Can 109(4):14–18

    CAS  Google Scholar 

  • Wai CM, Gopalan AS, Jacobs HK (2003) An introduction to separations and processes using supercritical carbon dioxide. In: ACS symposium series, 860 (Supercritical Carbon Dioxide), 2–8, American Chemical Society

    Google Scholar 

  • Wallmo H, Theliander H (2007) The Lignoboost process: comments on key-operations. In: International chemical recovery conference: efficiency and energy management, Quebec City, QC, Canada, 29 May–1 June, pp 333–335

    Google Scholar 

  • Warnqvist B, Delin L, Theliander H, Nohlgren I (2000) Teknisk ekonomisk utvärdering avsvartlutförgasningsprocesser. Värmeforsk service AB, Stockholm

    Google Scholar 

  • Werpy T, Petersen G (2004) Top value-added chemicals from biomass, volume i: results of screening for potential candidates from sugars and synthesis gas. Pacific NorthProduct west National Laboratory, Aug 2004. http://www.eere.energy.gov/biomass/pdfs/35523.pdf

  • Whitty K, Baxter L (2001) State of the art in black liquor gasification technology. In: Joint international combustion symposium, Kauai, Hawaii, 9–12 Sept 2001

    Google Scholar 

  • Whitty K, Verrill CL (2004) A historical look at the development of alternative black liquor recovery technologies and the evolution of black liquor gasifier designs. In: International chemical recovery conference, Charleston, SC, USA, 6–10 June 2004

    Google Scholar 

  • Whitty K, Nilsson A (2001) Experience from a high temperature, pressurized black liquor gasification pilot plant. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Wright JD, Power AJ (1987) Comparative technical evaluation of acid hydrolysis processes for conversion of cellulose to alcohol. Energy Biomass Wastes 949–971

    Google Scholar 

  • Wyman CE, Goodman BJ (1993) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39–40:41–59

    Article  Google Scholar 

  • Wyatt VT, Bush D, Lu J, Hallett JP, Liotta CL, Eckert CA (2005) Determination of solvatochromic solubility parameters for the characterization of gas-expanded liquids. J Supercrit Fluids 36(1):16–22

    Article  CAS  Google Scholar 

  • Wising U, Stuart PR (2006) Identifying the Canadian forest biorefinery. Pulp Pap Can 107(6):25–30

    CAS  Google Scholar 

  • Yang CQ, Lu Y (2000) In situ polymerization of maleic acid and itaconic acid on cotton studied by MALDI/TOF mass spectroscopy and a multiple angle lightscattering photometer. Text Res J 70:359–362

    Google Scholar 

  • Yanagisawa M, Shibata I, Isogai A (2005) SEC-MALLS analysis of softwood kraft pulp using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 12(2):151–158

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2018). Integrated Forest Biorefinery. In: Biotechnology for Pulp and Paper Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7853-8_23

Download citation

Publish with us

Policies and ethics