Skip to main content

Enzyme Application in Fiberboard

  • Chapter
  • First Online:
Biotechnology for Pulp and Paper Processing
  • 1827 Accesses

Abstract

Laccase enzymes are found to be very useful for applications in several biotechnological processes. Laccase is a oxidoreductase enzyme ; its action involves the oxidation of various phenolic polymers present in the lignin structure, with a concomitant reduction of oxygen to water. Laccase has been used in the pulp and paper industry for improving the wet strength of fibers. Use of laccase to activate the lignin structure was a new technique developed in the 1990s. In this chapter, use of laccase enzymes in the fabrication of binderless fiberboards is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajpai P (2017) Laccases and their applications, 1st edn. Bookboon, 169 pp

    Google Scholar 

  • Cao Y, Duan X, Cao Y, Lv J, Zhou G (2007) Effect of parameters for laccase treated fibre of Pinus kesiya var. langbianensis on strength of wet-process fibreboard. P China Assoc Sci Technol 3:114–118

    Google Scholar 

  • Euring M, Rühl M, Ritter N, Kües U, Kharazipour A (2011) Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism. Biotechnol J 6:1253–1261. https://doi.org/10.1002/biot.201100119

    Article  CAS  Google Scholar 

  • Felby C, Pedersen LS, Nielsen BR (1997) Enhanced auto-adhesion of wood fibres using phenol oxidases. Holzforschung 51:281–286

    Article  CAS  Google Scholar 

  • Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fibreboards made by laccase oxidized wood fibres: board properties and evidence for cross-linking of lignin. Enzyme Microbial Technol 31:736–741

    Article  CAS  Google Scholar 

  • Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fibre boards-evaluation of bonding mechanisms in boards made from laccase-treated fibres of beech (Fagus sylvatica). Ind Crop Prod 20:181–189

    Article  CAS  Google Scholar 

  • Garcia-Ubasart J, Colom JF, Vila C, Gómez Hernández N, Blanca Roncero M, Vidal T (2012) A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound. Biores Technol 112:341–344. https://doi.org/10.1016/j.biortech.2010.10.020

    Article  CAS  Google Scholar 

  • Gochev VK, Krastanov AI (2007) Fungal laccases. Bul J Agric Sci 13:75–83

    Google Scholar 

  • Guan X, Guo M, Lin J, Li J, Liu X (2015) Fiberboard made of miscellaneous wood fibers oxidized by laccase mediator system. Bul Chem Commun 47(4):1131–1135

    Google Scholar 

  • Haars A, Kharazipour A, Zanker H, Hüttermann A (1989) Room-temperature curing adhesives based on lignin and phenoloxidases. ACS Sym Ser 385:126–134

    Google Scholar 

  • Huttermann A, Milstein O, Nicklas B, Trojanowski J, Haars A, Kharazipour A (1989) Enzymatic modification of lignin for technical use Strategies and results. ACS Sym Ser 397:361–370

    Article  Google Scholar 

  • Huttermann A, Nonninger K, Kharazipour A (1998) Intermediate for the production of lignin polymerizates and their use in the production of derived timber products. Int Pat Appl WO9831729, 23 July, 1998

    Google Scholar 

  • Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55(4):387–394. https://doi.org/10.1007/s002530000590

    Article  CAS  Google Scholar 

  • IARC (2004) IARC decision on formaldehyde carcinogenicity. IARC, Lyon, France

    Google Scholar 

  • Kharazipour A, Hüttermann A, Kühne G, Rong M (1993) Process for glueing wood chips and articles produced by this process. Eur Pat Appl EP0565109, 13 Oct

    Google Scholar 

  • Kharazipour A, Hüttermann A, Lüdemann HD (1997) Enzymic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11:419–27

    Google Scholar 

  • Kharazipour A, Mai C, Hüttermann A (1998) Polyphenols for compounded materials. Polym Degrad Stabil 59:237–43

    Google Scholar 

  • Kharazipour AR, Schöpper C, Hg CM (2008). Review of forests, wood products and wood biotechnology of Iran and Germany—Part II, Universitätsverlag Göttingen

    Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase avarsatile enzyme for biotechnological application. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, vol 1. pp 233–245

    Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  Google Scholar 

  • Li X, Li Y, Zhong Z, Wang D, Ratto JA, Sheng K, Sun XS (2009) Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Biores Technol 100(14):3556–3562. https://doi.org/10.1016/j.biortech.2009.02.048

    Article  CAS  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48. https://doi.org/10.1023/A:1021070006895

    Article  CAS  Google Scholar 

  • Lund M, Felby C (2001) Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation. Enzyme Microbial Technol 28(9–10):760–765. https://doi.org/10.1016/S0141-0229(01)00339-8

    Article  CAS  Google Scholar 

  • Mattinen ML, Maijala P, Nousiainen P, Smeds A, Kontro J, Sipilä J, Tamminen T, Willför S, Viikari L (2011) Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. J Mol Catal B Enzym 72(3–4):122–129. https://doi.org/10.1016/j.molcatb.2011.05.009

    Article  CAS  Google Scholar 

  • Milstein O, Hüttermann A, Fründ R, Lüdemann HD (1994) Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 40(5):760–767. https://doi.org/10.1007/BF00173342

    Article  CAS  Google Scholar 

  • Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microbial Technol 49(6–7):492–498. https://doi.org/10.1016/j.enzmictec.2011.09.012

    Article  CAS  Google Scholar 

  • Moubarik A, Charrier B, Allal A, Charrier F, Pizzi A (2009) Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur J Wood Wood Prod 68(2):167–177. https://doi.org/10.1007/s00107-009-0357-6

    Article  Google Scholar 

  • Nasir M, Gupta A, Beg MDH, Chua GK, Jawaid M, Kumar A, Khan TA (2013) Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 8(3):3599–3608

    Article  Google Scholar 

  • Nasir M, Gupta, A, Beg M, Chua GK, Kumar A (2014a) Physical and mechanical properties of medium-density fibreboards using soy-lignin adhesives. J Trop For Sci 41–49

    Google Scholar 

  • Nasir M, Gupta A, Beg MDH, Chua, GK, Asim M (2014b) Laccase application in medium density fibreboard to prepare a bio-composite, RSC Advances 4(22):11520–11527. https://doi.org/10.1039/c3ra40593a

  • Nasir M, Hashim R, Sulaiman O, Nordin NA, Lamaming J, Asim M (2015a) Laccase, an emerging tool to fabricate green composites: a review. BioResources 10(3):6262–6284

    Google Scholar 

  • Nasir M, Sulaiman O, Hashim R, Hossain K, Gupta A, Asim M (2015b) Rubberwood fiber treatment by laccase enzyme and its application in medium density fiberboard. J Pure Appl Microbiol 9(3):2095–2100

    Google Scholar 

  • Ohkuma M, Maeda Y, Johjima T, Kudo T (2001) Lignin degradation and roles of white rot fungi: Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Focused Ecomolecular Sci Res 42(42):39–42

    CAS  Google Scholar 

  • Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846

    Article  CAS  Google Scholar 

  • Qvintus-Leino P, Widsten P, Tuominen S, Laine J, Kunnas J (2003) Method of producing compressed layered structures such as fibreboard or similar wood-based product. Int Pat Appl WO03047826, 12 June, 2003

    Google Scholar 

  • Tamminen T, Liitiä T, Kalliola A, Ohra-aho T, Rovio S, Ropponen J (2010) Modification and characterisation of technical lignins. J Biotechnol 150:509–509. https://doi.org/10.1016/j.jbiotec.2010.09.801

  • Thielemans W, Can E, Morye S, Wool R (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83(2):323–331. https://doi.org/10.1002/app.2247

    Article  CAS  Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  • Van de Pas D, Hickson A, Donaldson L, Lloyd-Jones G, Tamminen T, Fernyhough A, Mattinen M (2011) Characterization of fractionated lignins polymerized by fungal laccases. BioResources 6(2):1105–1121. https://doi.org/10.15376/biores.6.2.1105-1121

    Google Scholar 

  • Viikari L, Hase A, Qvintus-Leino P, Kataja K, Tuominen S, Gadda L (1998) Lignin-based adhesive for particleboard manufacture. Int Pat Appl WO9831764, 23 July, 1998

    Google Scholar 

  • Widsten P (2002) Oxidative activation of wood fibers for the manufacture of medium-density fiberboard (MDF). Ph.D. dissertation, Laboratory of Paper Technology, Helsinki University of Technology, Espoo, Finland

    Google Scholar 

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307

    Article  CAS  Google Scholar 

  • Widsten P, Laine JE, Tuominen S, Qvintus-Leino P (2003) Effect of high defibration temperature on the properties of medium-density fibreboard (MDF) made from laccase-treated hardwood fibres. J Adhes Sci Technol 17:67–78

    Article  CAS  Google Scholar 

  • Widsten P, Tuominen S, Qvintus-Leino P, Laine JE (2004) The influence of high defibration temperature on the properties of medium-density fibreboard (MDF) made from laccase-treated softwood fibres. Wood Sci Technol 38:521–528

    Article  CAS  Google Scholar 

  • Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, FL, pp 303–347

    Google Scholar 

  • Witayakran S, Ragauskas AJ (2009) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 44(3):176–181

    Article  CAS  Google Scholar 

  • Wu J, Zhang X, Wan J, Ma F, Tang Y, Zhang X (2011) Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Biores Technol 102(24):11258–11261. https://doi.org/10.1016/j.biortech.2011.09.097

    Article  CAS  Google Scholar 

  • Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Biores Technol 100(21):5170–5175. https://doi.org/10.1016/j.biortech.2009.05.049

    Article  CAS  Google Scholar 

  • Zhou G, Li J, Chen Y, Zhao B, Cao Y, Duan X, Cao Y (2009) Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Biores Technol 100(1):505–508. https://doi.org/10.1016/j.biortech.2008.06.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, P. (2018). Enzyme Application in Fiberboard. In: Biotechnology for Pulp and Paper Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7853-8_13

Download citation

Publish with us

Policies and ethics