Advertisement

Enzyme Application in Fiberboard

  • Pratima Bajpai
Chapter

Abstract

Laccase enzymes are found to be very useful for applications in several biotechnological processes. Laccase is a oxidoreductase enzyme; its action involves the oxidation of various phenolic polymers present in the lignin structure, with a concomitant reduction of oxygen to water. Laccase has been used in the pulp and paper industry for improving the wet strength of fibers. Use of laccase to activate the lignin structure was a new technique developed in the 1990s. In this chapter, use of laccase enzymes in the fabrication of binderless fiberboards is presented.

Keywords

Enzyme Laccases Lignin Fiberboard Green composites Wood composites Binderless particle board 

References

  1. Bajpai P (2017) Laccases and their applications, 1st edn. Bookboon, 169 ppGoogle Scholar
  2. Cao Y, Duan X, Cao Y, Lv J, Zhou G (2007) Effect of parameters for laccase treated fibre of Pinus kesiya var. langbianensis on strength of wet-process fibreboard. P China Assoc Sci Technol 3:114–118Google Scholar
  3. Euring M, Rühl M, Ritter N, Kües U, Kharazipour A (2011) Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism. Biotechnol J 6:1253–1261.  https://doi.org/10.1002/biot.201100119 CrossRefGoogle Scholar
  4. Felby C, Pedersen LS, Nielsen BR (1997) Enhanced auto-adhesion of wood fibres using phenol oxidases. Holzforschung 51:281–286CrossRefGoogle Scholar
  5. Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fibreboards made by laccase oxidized wood fibres: board properties and evidence for cross-linking of lignin. Enzyme Microbial Technol 31:736–741CrossRefGoogle Scholar
  6. Felby C, Thygesen LG, Sanadi A, Barsberg S (2004) Native lignin for bonding of fibre boards-evaluation of bonding mechanisms in boards made from laccase-treated fibres of beech (Fagus sylvatica). Ind Crop Prod 20:181–189CrossRefGoogle Scholar
  7. Garcia-Ubasart J, Colom JF, Vila C, Gómez Hernández N, Blanca Roncero M, Vidal T (2012) A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound. Biores Technol 112:341–344.  https://doi.org/10.1016/j.biortech.2010.10.020 CrossRefGoogle Scholar
  8. Gochev VK, Krastanov AI (2007) Fungal laccases. Bul J Agric Sci 13:75–83Google Scholar
  9. Guan X, Guo M, Lin J, Li J, Liu X (2015) Fiberboard made of miscellaneous wood fibers oxidized by laccase mediator system. Bul Chem Commun 47(4):1131–1135Google Scholar
  10. Haars A, Kharazipour A, Zanker H, Hüttermann A (1989) Room-temperature curing adhesives based on lignin and phenoloxidases. ACS Sym Ser 385:126–134Google Scholar
  11. Huttermann A, Milstein O, Nicklas B, Trojanowski J, Haars A, Kharazipour A (1989) Enzymatic modification of lignin for technical use Strategies and results. ACS Sym Ser 397:361–370CrossRefGoogle Scholar
  12. Huttermann A, Nonninger K, Kharazipour A (1998) Intermediate for the production of lignin polymerizates and their use in the production of derived timber products. Int Pat Appl WO9831729, 23 July, 1998Google Scholar
  13. Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55(4):387–394.  https://doi.org/10.1007/s002530000590 CrossRefGoogle Scholar
  14. IARC (2004) IARC decision on formaldehyde carcinogenicity. IARC, Lyon, FranceGoogle Scholar
  15. Kharazipour A, Hüttermann A, Kühne G, Rong M (1993) Process for glueing wood chips and articles produced by this process. Eur Pat Appl EP0565109, 13 OctGoogle Scholar
  16. Kharazipour A, Hüttermann A, Lüdemann HD (1997) Enzymic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11:419–27Google Scholar
  17. Kharazipour A, Mai C, Hüttermann A (1998) Polyphenols for compounded materials. Polym Degrad Stabil 59:237–43Google Scholar
  18. Kharazipour AR, Schöpper C, Hg CM (2008). Review of forests, wood products and wood biotechnology of Iran and Germany—Part II, Universitätsverlag GöttingenGoogle Scholar
  19. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase avarsatile enzyme for biotechnological application. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, vol 1. pp 233–245Google Scholar
  20. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33.  https://doi.org/10.1007/s10924-006-0042-3 CrossRefGoogle Scholar
  21. Li X, Li Y, Zhong Z, Wang D, Ratto JA, Sheng K, Sun XS (2009) Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Biores Technol 100(14):3556–3562.  https://doi.org/10.1016/j.biortech.2009.02.048 CrossRefGoogle Scholar
  22. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48.  https://doi.org/10.1023/A:1021070006895 CrossRefGoogle Scholar
  23. Lund M, Felby C (2001) Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation. Enzyme Microbial Technol 28(9–10):760–765.  https://doi.org/10.1016/S0141-0229(01)00339-8 CrossRefGoogle Scholar
  24. Mattinen ML, Maijala P, Nousiainen P, Smeds A, Kontro J, Sipilä J, Tamminen T, Willför S, Viikari L (2011) Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. J Mol Catal B Enzym 72(3–4):122–129.  https://doi.org/10.1016/j.molcatb.2011.05.009 CrossRefGoogle Scholar
  25. Milstein O, Hüttermann A, Fründ R, Lüdemann HD (1994) Enzymatic co-polymerization of lignin with low-molecular mass compounds. Appl Microbiol Biotechnol 40(5):760–767.  https://doi.org/10.1007/BF00173342 CrossRefGoogle Scholar
  26. Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microbial Technol 49(6–7):492–498.  https://doi.org/10.1016/j.enzmictec.2011.09.012 CrossRefGoogle Scholar
  27. Moubarik A, Charrier B, Allal A, Charrier F, Pizzi A (2009) Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur J Wood Wood Prod 68(2):167–177.  https://doi.org/10.1007/s00107-009-0357-6 CrossRefGoogle Scholar
  28. Nasir M, Gupta A, Beg MDH, Chua GK, Jawaid M, Kumar A, Khan TA (2013) Fabricating eco-friendly binderless fiberboard from laccase-treated rubber wood fiber. BioResources 8(3):3599–3608CrossRefGoogle Scholar
  29. Nasir M, Gupta, A, Beg M, Chua GK, Kumar A (2014a) Physical and mechanical properties of medium-density fibreboards using soy-lignin adhesives. J Trop For Sci 41–49Google Scholar
  30. Nasir M, Gupta A, Beg MDH, Chua, GK, Asim M (2014b) Laccase application in medium density fibreboard to prepare a bio-composite, RSC Advances 4(22):11520–11527.  https://doi.org/10.1039/c3ra40593a
  31. Nasir M, Hashim R, Sulaiman O, Nordin NA, Lamaming J, Asim M (2015a) Laccase, an emerging tool to fabricate green composites: a review. BioResources 10(3):6262–6284Google Scholar
  32. Nasir M, Sulaiman O, Hashim R, Hossain K, Gupta A, Asim M (2015b) Rubberwood fiber treatment by laccase enzyme and its application in medium density fiberboard. J Pure Appl Microbiol 9(3):2095–2100Google Scholar
  33. Ohkuma M, Maeda Y, Johjima T, Kudo T (2001) Lignin degradation and roles of white rot fungi: Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Focused Ecomolecular Sci Res 42(42):39–42Google Scholar
  34. Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Technol 20:829–846CrossRefGoogle Scholar
  35. Qvintus-Leino P, Widsten P, Tuominen S, Laine J, Kunnas J (2003) Method of producing compressed layered structures such as fibreboard or similar wood-based product. Int Pat Appl WO03047826, 12 June, 2003Google Scholar
  36. Tamminen T, Liitiä T, Kalliola A, Ohra-aho T, Rovio S, Ropponen J (2010) Modification and characterisation of technical lignins. J Biotechnol 150:509–509.  https://doi.org/10.1016/j.jbiotec.2010.09.801
  37. Thielemans W, Can E, Morye S, Wool R (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83(2):323–331.  https://doi.org/10.1002/app.2247 CrossRefGoogle Scholar
  38. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280.  https://doi.org/10.1016/j.progpolymsci.2011.06.004 CrossRefGoogle Scholar
  39. Van de Pas D, Hickson A, Donaldson L, Lloyd-Jones G, Tamminen T, Fernyhough A, Mattinen M (2011) Characterization of fractionated lignins polymerized by fungal laccases. BioResources 6(2):1105–1121.  https://doi.org/10.15376/biores.6.2.1105-1121 Google Scholar
  40. Viikari L, Hase A, Qvintus-Leino P, Kataja K, Tuominen S, Gadda L (1998) Lignin-based adhesive for particleboard manufacture. Int Pat Appl WO9831764, 23 July, 1998Google Scholar
  41. Widsten P (2002) Oxidative activation of wood fibers for the manufacture of medium-density fiberboard (MDF). Ph.D. dissertation, Laboratory of Paper Technology, Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  42. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307CrossRefGoogle Scholar
  43. Widsten P, Laine JE, Tuominen S, Qvintus-Leino P (2003) Effect of high defibration temperature on the properties of medium-density fibreboard (MDF) made from laccase-treated hardwood fibres. J Adhes Sci Technol 17:67–78CrossRefGoogle Scholar
  44. Widsten P, Tuominen S, Qvintus-Leino P, Laine JE (2004) The influence of high defibration temperature on the properties of medium-density fibreboard (MDF) made from laccase-treated softwood fibres. Wood Sci Technol 38:521–528CrossRefGoogle Scholar
  45. Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, FL, pp 303–347Google Scholar
  46. Witayakran S, Ragauskas AJ (2009) Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 44(3):176–181CrossRefGoogle Scholar
  47. Wu J, Zhang X, Wan J, Ma F, Tang Y, Zhang X (2011) Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Biores Technol 102(24):11258–11261.  https://doi.org/10.1016/j.biortech.2011.09.097 CrossRefGoogle Scholar
  48. Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Biores Technol 100(21):5170–5175.  https://doi.org/10.1016/j.biortech.2009.05.049 CrossRefGoogle Scholar
  49. Zhou G, Li J, Chen Y, Zhao B, Cao Y, Duan X, Cao Y (2009) Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Biores Technol 100(1):505–508.  https://doi.org/10.1016/j.biortech.2008.06.010 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Pulp and Paper ConsultantKanpurIndia

Personalised recommendations