Electrochemical Sandwich Assays for Nucleic Acid Detection

  • Meihua Lin
  • Xiaolei ZuoEmail author


Quantitative determination of nucleic acids related to human health and safety has attracted a great interest. Electrochemical sandwich-type biosensor with simple operation and low price shows high sensitivity and specificity with dual recognition mechanism and has been widely used for nucleic acid detection. In this chapter, we highlight the advancements of electrochemical sandwich assay for nucleic acids in recent decade. We first introduced the importance of nucleic acid detection and the principles of design an electrochemical nucleic acid sandwich assay and then summarized the advancements of this strategy based on the types of reporter tags, including redox molecules, enzymes, and nanoparticles. Finally, we discussed the challenges in the development of electrochemical nucleic acid sandwich assay to apply for clinical diagnostics, in cells and in vivo.


Sandwich electrochemical biosensor Nucleic acid detection Label-free strategy Redox label Enzyme amplification Nanoparticle application Engineering interface 


  1. 1.
    Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090CrossRefGoogle Scholar
  2. 2.
    Huber F, Lang HP, Backmann N, Rimoldi D, Gerber C (2013) Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat Nanotechnol 8:125–129CrossRefGoogle Scholar
  3. 3.
    Song SP, Qin Y, He Y, Huang Q, Fan CH, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39:4234–4243CrossRefGoogle Scholar
  4. 4.
    Du Y, Dong SJ (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189–215CrossRefGoogle Scholar
  5. 5.
    Zhou W, Gao X, Liu DB, Chen XY (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636CrossRefGoogle Scholar
  6. 6.
    Harvey JD, Jena PV, Baker HA, Zerze GH, Williams RM, Galassi TV, Roxbury D, Mittal J, Heller DA (2017) A carbon nanotube reporter of microRNA hybridization events in vivo. Nat Biomed Eng 1:0041CrossRefGoogle Scholar
  7. 7.
    Graybill RM, Bailey RC (2016) Emerging biosensing approaches for microRNA analysis. Anal Chem 88:431–450CrossRefGoogle Scholar
  8. 8.
    Zhu CZ, Yang GH, Li H, Du D, Lin YH (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  9. 9.
    Yu HLL, Maslova A, Hsing IM (2017) Rational design of electrochemical DNA biosensors for point-of-care applications. ChemElectroChem 4:795–805CrossRefGoogle Scholar
  10. 10.
    Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  11. 11.
    Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:2888–2895CrossRefGoogle Scholar
  12. 12.
    Hu KC, Lan DX, Li XM, Zhang SS (2008) Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA–Au bio bar codes. Anal Chem 80:9124–9130CrossRefGoogle Scholar
  13. 13.
    Li FY, Peng J, Zheng Q, Guo X, Tang H, Yao SZ (2015) Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24. Anal Chem 87:4806–4813CrossRefGoogle Scholar
  14. 14.
    Li Y, Liu BW, Li X, Wei QL (2010) Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method. Biosens Bioelectron 25:2543–2547CrossRefGoogle Scholar
  15. 15.
    Sage AT, Besant JD, Lam B, Sargent EH, Kelley SO (2014) Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc Chem Res 47:2417–2425CrossRefGoogle Scholar
  16. 16.
    Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO (2015) An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 7:569–575CrossRefGoogle Scholar
  17. 17.
    Das J, Ivanov I, Sargent EH, Kelley SO (2016) DNA clutch probes for circulating tumor DNA analysis. J Am Chem Soc 138:11009–11016CrossRefGoogle Scholar
  18. 18.
    Su S, Cao WF, Liu W, Lu ZW, Zhu D, Weng LX, Wang LH, Fan CH, Wang LH (2017) Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosens Bioelectron 94:552–559CrossRefGoogle Scholar
  19. 19.
    Shi AQ, Wang J, Han XW, Fang X, Zhang YZ (2014) A sensitive electrochemical DNA biosensor based on gold nanomaterial and graphene amplified signal. Sens Actuators B 200:206–212CrossRefGoogle Scholar
  20. 20.
    Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK (2000) Mutation detection by electrocatalysis at DNA-modified electrodes. Nat Biotechnol 18:1096–1100CrossRefGoogle Scholar
  21. 21.
    Shi L, Chu ZY, Liu Y, Jin WQ, Chen XJ (2013) Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosens Bioelectron 49:184–191CrossRefGoogle Scholar
  22. 22.
    Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348CrossRefGoogle Scholar
  23. 23.
    Liu SP, Su WQ, Li ZL, Ding XT (2015) Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron 71:57–61CrossRefGoogle Scholar
  24. 24.
    Ahangar LE, Mehrgardi MA (2012) Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor. Biosens Bioelectron 38:252–257CrossRefGoogle Scholar
  25. 25.
    Chao J, Cao WF, Su S, Weng LX, Song SP, Fan CH, Wang LH (2016) Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J Mater Chem B 4:1757–1769CrossRefGoogle Scholar
  26. 26.
    Li H, Arroyo Currás N, Kang D, Ricci F, Plaxco KW (2016) Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood. J Am Chem Soc 138:15809–15812CrossRefGoogle Scholar
  27. 27.
    Kang D, Ricci F, White RJ, Plaxco KW (2016) Survey of redox-active moieties for application in multiplexed electrochemical biosensors. Anal Chem 88:10452–10458CrossRefGoogle Scholar
  28. 28.
    Pheeney CG, Barton JK (2012) DNA electrochemistry with tethered methylene blue. Langmuir 28:7063–7070CrossRefGoogle Scholar
  29. 29.
    Li FQ, Yu ZQ, Qu HC, Zhang GL, Yan H, Liu X, He XJ (2015) A highly sensitive and specific electrochemical sensing method for robust detection of Escherichia coli lac Z gene sequence. Biosens Bioelectron 68:78–82CrossRefGoogle Scholar
  30. 30.
    Moradi N, Noori A, Mehrgardi MA, Mousavi MF (2016) Scanning electrochemical microscopy for electrochemical detection of single-base mismatches by tagging ferrocenecarboxylic acid as a redox probe to DNA. Electroanalysis 28:823–832CrossRefGoogle Scholar
  31. 31.
    Cheeveewattanagul N, Rijiravanich P, Surareungchai W, Somasundrum M (2016) Loading of silicon nanoparticle labels with redox mediators for detection of multiple DNA targets within a single voltammetric sweep. J Electrochem Soc 779:61–66Google Scholar
  32. 32.
    Liu G, Wan Y, Gau V, Zhang J, Wang LH, Song SP, Fan CH (2008) An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J Am Chem Soc 130:6820–6825CrossRefGoogle Scholar
  33. 33.
    Pei H, Lu N, Wen YL, Song SP, Liu Y, Yan H, Fan CH (2010) A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater 22:4754–4758CrossRefGoogle Scholar
  34. 34.
    Lin MH, Wang JJ, Zhou GB, Wu N, Lu JX, Gao JM, Chen XQ, Shi JJ, Zuo XL, Fan CH (2015) Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew Chem Int Ed 54:2151–2155CrossRefGoogle Scholar
  35. 35.
    Zhang J, Lao RJ, Song SP, Yan ZY, Fan CH (2008) Design of an oligonucleotide-incorporated nonfouling surface and its application in electrochemical DNA sensors for highly sensitive and sequence-specific detection of target DNA. Anal Chem 80:9029–9033CrossRefGoogle Scholar
  36. 36.
    Wan Y, Zhang J, Liu G, Pan D, Wang LH, Song SP, Fan CH (2009) Ligase-based multiple DNA analysis by using an electrochemical sensor array. Biosens Bioelectron 24:1209–1212CrossRefGoogle Scholar
  37. 37.
    Wen YL, Pei H, Shen Y, Xi JJ, Lin MH, Lu N, Shen XZ, Li J, Fan CH (2012) DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci Rep 2:867–872CrossRefGoogle Scholar
  38. 38.
    Wu J, Campuzano S, Halford C, Haake DA, Wang J (2010) Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification. Anal Chem 82:8830–8837CrossRefGoogle Scholar
  39. 39.
    Liu YH, Li HN, Chen W, Liu AL, Lin XH, Chen YZ (2013) Bovine serum albumin-based probe carrier platform for electrochemical DNA biosensing. Anal Chem 85:273–277CrossRefGoogle Scholar
  40. 40.
    Lin MH, Song P, Zhou GB, Zuo XL, Aldalbahi A, Lou XD, Shi JY, Fan CH (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc 11:1244–1263CrossRefGoogle Scholar
  41. 41.
    Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665CrossRefGoogle Scholar
  42. 42.
    Zeng DD, Wang ZH, Meng ZQ, Wang P, San LL, Wang W, Aldalbahi A, Li L, Shen JW, Mi XQ (2017) DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl Mater Interfaces 9:24118–24125CrossRefGoogle Scholar
  43. 43.
    Fan HJ, Wang XL, Jiao F, Zhang F, Wang QJ, He PG, Fang YZ (2013) Scanning electrochemical microscopy of DNA hybridization on DNA microarrays enhanced by HRP-modified SiO2 nanoparticles. Anal Chem 85:6511–6517CrossRefGoogle Scholar
  44. 44.
    Liu AL, Zhong GX, Chen JY, Weng SH, Huang HA, Chen W, Lin LQ, Lei Y, Fu FH, Sun ZL, Lin XH, Lin JH, Yang SY (2013) A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films. Anal Chim Acta 767:50–58CrossRefGoogle Scholar
  45. 45.
    Dong HF, Zhu Z, Ju HX, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles–graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33:228–232CrossRefGoogle Scholar
  46. 46.
    Zhou YY, Tang L, Zeng GM, Chen J, Wang JJ, Fan CZ, Yang GD, Zhang Y, Xie X (2015) Amplified and selective detection of manganese peroxidase genes based on enzyme-scaffolded-gold nanoclusters and mesoporous carbon nitride. Biosens Bioelectron 65:382–389CrossRefGoogle Scholar
  47. 47.
    Palchetti I, Laschi S, Marrazza G, Mascini M (2007) Electrochemical imaging of localized sandwich DNA hybridization using scanning electrochemical microscopy. Anal Chem 79:7206–7213CrossRefGoogle Scholar
  48. 48.
    Wu J, Chumbimuni-Torres KY, Galik M, Thammakhet C, Haake DA, Wang J (2009) Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode. Anal Chem 81:10007–10012CrossRefGoogle Scholar
  49. 49.
    Lee AC, Dai ZY, Chen BW, Wu H, Wang J, Zhang AG, Zhang LR, Lim T, Lin YH (2008) Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA. Anal Chem 80:9402–9410CrossRefGoogle Scholar
  50. 50.
    Shuai HL, Huang KJ, Zhang WJ, Cao XY, Jia MP (2017) Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification. Sens Actuators B 243:403–411CrossRefGoogle Scholar
  51. 51.
    Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417:73–79CrossRefGoogle Scholar
  52. 52.
    Xie H, Zhang CY, Gao ZQ (2004) Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Anal Chem 76:1611–1617CrossRefGoogle Scholar
  53. 53.
    Zhang LY, Li D, Meng WL, Huang Q, Su Y, Wang LH, Song SP, Fan CH (2009) Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosens Bioelectron 25:368–372CrossRefGoogle Scholar
  54. 54.
    Gao ZQ, Peng YF (2011) A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Biosens Bioelectron 26:3768–3773CrossRefGoogle Scholar
  55. 55.
    Zhang GY, Deng SY, Cai WY, Cosnier S, Zhang XJ, Shan D (2015) Magnetic zirconium hexacyanoferrate(II) nanoparticle as tracing tag for electrochemical DNA assay. Anal Chem 87:9093–9100CrossRefGoogle Scholar
  56. 56.
    Miao XM, Wang WH, Kang TS, Liu JB, Shiu K, Leung CH, Ma D (2016) Ultrasensitive electrochemical detection of miRNA-21 by using an iridium(III) complex as catalyst. Biosens Bioelectron 86:454–458CrossRefGoogle Scholar
  57. 57.
    Dong HF, Jin S, Ju HX, Hao KH, Xu LP, Lu HT, Zhang XJ (2012) Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84:8670–8674CrossRefGoogle Scholar
  58. 58.
    Spain E, Brennan E, McArdle H, Keyes TE, Forster RJ (2012) High sensitivity DNA detection based on regioselectively decorated electrocatalytic nanoparticles. Anal Chem 84:6471–6476CrossRefGoogle Scholar
  59. 59.
    Chai Y, Tian DY, Wang W, Cui H (2010) A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system. Chem Commun 46:7560–7562CrossRefGoogle Scholar
  60. 60.
    Dong XY, Mi XN, Zhang L, Liang TM, Xu JJ, Chen HY (2012) DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis. Biosens Bioelectron 38:337–341CrossRefGoogle Scholar
  61. 61.
    Zhang K, Dong HF, Dai WH, Meng XD, Lu HT, Wu TT, Zhang XJ (2017) Fabricating Pt/Sn–In2O3 nanoflower with advanced oxygen reduction reaction performance for high-sensitivity microRNA electrochemical detection. Anal Chem 89:648–655CrossRefGoogle Scholar
  62. 62.
    Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779CrossRefGoogle Scholar
  63. 63.
    Daneshpour M, Moradi LS, Izadi P, Omidfar K (2016) Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 77:1095–1103CrossRefGoogle Scholar
  64. 64.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760CrossRefGoogle Scholar
  65. 65.
    Lin L, Liu Y, Tang LH, Li JH (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136:4732–4737CrossRefGoogle Scholar
  66. 66.
    Li H, Sun ZY, Zhong WY, Hao N, Xu DK, Chen HY (2010) Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem 82:5477–5483CrossRefGoogle Scholar
  67. 67.
    Dong HF, Yan F, Ji HX, Wong DKY, Ju HX (2010) Quantum-dot-functionalized poly(styrene-co-acrylic acid microbeads: step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater 20:1173–1179CrossRefGoogle Scholar
  68. 68.
    Vijian D, Chinni SV, Yin LS, Lertanantawong B, Surareungchai W (2016) Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens. Biosens Bioelectron 77:805–811CrossRefGoogle Scholar
  69. 69.
    Cheng FF, He TT, Miao HH, Shi JJ, Jiang LP, Zhu JJ (2015) Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal Ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl Mater Interfaces 7:2979–2985CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations