Fluorescence Sandwich Assays for Nucleic Acid Detection

  • Xinwen Liu
  • Quan YuanEmail author


Fluorescence sandwich assays have wide application in the detection of nucleic acids due to its well-developed synthesis process, simple detection procedures, and high sensitivity. Specifically, two oligonucleotide probes, named capture probe and signal probe respectively, are introduced and hybridize with different regions of a single-stranded target gene, forming a “capture probe-target-signal probe” sandwiched format. Distinctive fluorescent emission is therefore generated with the formation of sandwich-format and can be directly detected by conventional instruments without further procedures. In this chapter, we conclude the principle and recent developments of this assay based on the classification of fluorophore materials, including fluorescent organic dyes and fluorescent nanomaterials. For each section, the principle of design strategy is firstly introduced, which contains fluorescence resonance energy transfer (FRET) and DNA hybridization-induced fluorescence enhancement. Furthermore, we discuss the limitations and challenges in the development of fluorescent sandwich assays regarding sensitivity and multiple detection capacity, thus providing an overview of the developing situation and offering insight to further developments of nucleic acid assay.


Fluorescence sandwich assay Nucleic acid Organic dye Quantum dot Dye-doped nanoparticle 


  1. 1.
    Zuo XB, Yang XH, Wang KM, Tan WH, Wen JH (2007) A novel sandwich assay with molecular beacon as report probe for nucleic acids detection on one-dimensional microfluidic beads array. Anal Chim Acta 587:9–13CrossRefGoogle Scholar
  2. 2.
    Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  3. 3.
    Epstein JR, Biran I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36CrossRefGoogle Scholar
  4. 4.
    Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45:4562–4588CrossRefGoogle Scholar
  5. 5.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310CrossRefGoogle Scholar
  6. 6.
    Marti AA, Li XX, Jockusch S, Stevens N, Li ZM, Raveendra B, Kalachikov S, Morozova I, Russo JJ, Akins DL, Ju JY, Turro NJ (2007) Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection. Tetrahedron 63:3591–3600CrossRefGoogle Scholar
  7. 7.
    Heller M, Morrison L, Prevatt W, Akin C (1983) Light-emitting polynucleotide hybridization diagnostic method. European patent application 70:685Google Scholar
  8. 8.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505CrossRefGoogle Scholar
  9. 9.
    Kolpashchikov DM (2010) Binary probes for nucleic acid analysis. Chem Rev 110:4709–4723CrossRefGoogle Scholar
  10. 10.
    Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000) Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J 78:3260–3274CrossRefGoogle Scholar
  11. 11.
    Mergny JL, Boutorine AS, Garestier T, Belloc F, Rougee M, Bulychev NV, Koshkin AA, Bourson J, Lebedev AV, Valeur B, Thuong NT, Helene C (1994) Fluorescence energy-transfer as a probe for nucleic-acid structures and sequences. Nucleic Acids Res 22:920–928CrossRefGoogle Scholar
  12. 12.
    Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31:1106–1107Google Scholar
  13. 13.
    Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic-acid hybridization by nonradiative fluorescence resonance energy-transfer. Proc Natl Acad Sci USA 85:8790–8794CrossRefGoogle Scholar
  14. 14.
    Masuko M, Ohuchi S, Sode K, Ohtani H, Shimadzu A (2000) Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Nucleic Acids Res 28:E34CrossRefGoogle Scholar
  15. 15.
    Juskowiak B (2011) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399:3157–3176CrossRefGoogle Scholar
  16. 16.
    Okamura Y, Kondo S, Sase I, Suga T, Mise K, Furusawa I, Kawakami S, Watanabe Y (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic Acids Res 28:E107CrossRefGoogle Scholar
  17. 17.
    Root DD, Vaccaro C, Zhang ZL, Castro M (2004) Detection of single nucleotide variations by a hybridization proximity assay based on molecular beacons and luminescence resonance energy transfer. Biopolymers 75:60–70CrossRefGoogle Scholar
  18. 18.
    Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:E57CrossRefGoogle Scholar
  19. 19.
    Birks J (1975) Excimers. Rep Prog Phys 38:903–974CrossRefGoogle Scholar
  20. 20.
    Ebata K, Masuko M, Ohtani H, Kashiwasakejibu M (1995) Nucleic-acid hybridization accompanied with excimer formation from 2 pyrene-labeled probes. Photochem Photobiol 62:836–839CrossRefGoogle Scholar
  21. 21.
    Masuko M, Ohtani H, Ebata K, Shimadzu A (1998) Optimization of excimer-forming two-probe nucleic acid hybridization method with pyrene as a fluorophore. Nucleic Acids Res 26:5409–5416CrossRefGoogle Scholar
  22. 22.
    Marti AA, Li XX, Jockusch S, Li ZM, Raveendra B, Kalachikov S, Russo JJ, Morozova I, Puthanveettil SV, Ju JY, Turro NJ (2006) Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Res 34:3161–3168CrossRefGoogle Scholar
  23. 23.
    Grate D, Wilson C (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci USA 96:6131–6136CrossRefGoogle Scholar
  24. 24.
    Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125:14716–14717CrossRefGoogle Scholar
  25. 25.
    Kolpashchikov DM (2005) Binary malachite green aptamer for fluorescent detection of nucleic acids. J Am Chem Soc 127:12442–12443CrossRefGoogle Scholar
  26. 26.
    Sando S, Narita A, Aoyama Y (2007) Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem 8:1795–1803CrossRefGoogle Scholar
  27. 27.
    Endo K, Nakamura Y (2010) A binary Cy3 aptamer probe composed of folded modules. Anal Biochem 400:103–109CrossRefGoogle Scholar
  28. 28.
    Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646CrossRefGoogle Scholar
  29. 29.
    Kikuchi N, Kolpashchikov DM (2016) Split spinach aptamer for highly selective recognition of DNA and RNA at ambient temperatures. ChemBioChem 17:1589–1592CrossRefGoogle Scholar
  30. 30.
    AlSalhi MS, Alam J, Dass LA, Raja M (2011) Recent advances in conjugated polymers for light emitting devices. Int J Mol Sci 12:2036–2054CrossRefGoogle Scholar
  31. 31.
    Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  32. 32.
    Gaylord BS, Heeger AJ, Bazan GC (2002) DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci USA 99:10954–10957CrossRefGoogle Scholar
  33. 33.
    Pu F, Hu D, Ren JS, Wang S, Qu XG (2010) Universal platform for sensitive and label-free nuclease assay based on conjugated polymer and DNA/intercalating dye complex. Langmuir 26:4540–4545CrossRefGoogle Scholar
  34. 34.
    Xu C, Zhou RY, Zhang RC, Yang LY, Wang GJ (2014) Label-free DNA sequence detection through FRET from a fluorescent polymer with pyrene excimer to SG. ACS Macro Lett 3:845–848CrossRefGoogle Scholar
  35. 35.
    Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefGoogle Scholar
  36. 36.
    Eigen M, Rigler R (1994) Sorting single molecules-application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747CrossRefGoogle Scholar
  37. 37.
    Lee J, Kim IS, Yu HW (2010) Flow cytometric detection of bacillus spoOA gene in biofilm using quantum dot labeling. Anal Chem 82:2836–2843CrossRefGoogle Scholar
  38. 38.
    Yeh HC, Ho YP, Wang TH (2005) Quantum dot-mediated biosensing assays for specific nucleic acid detection. Nanomed-Nanotechnol Biol Med 1:115–121CrossRefGoogle Scholar
  39. 39.
    Ho YP, Kung MC, Yang S, Wang TH (2005) Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 5:1693–1697CrossRefGoogle Scholar
  40. 40.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831CrossRefGoogle Scholar
  41. 41.
    Algar WR, Krull UJ (2010) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82:400–405CrossRefGoogle Scholar
  42. 42.
    Algar WR, Krull UJ (2009) Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. Langmuir 25:633–638CrossRefGoogle Scholar
  43. 43.
    Noor MO, Tavares AJ, Krull UJ (2013) On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chim Acta 788:148–157CrossRefGoogle Scholar
  44. 44.
    Noor MO, Krull UJ (2014) Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86:10331–10339CrossRefGoogle Scholar
  45. 45.
    Li M, Cushing SK, Wang QY, Shi XD, Hornak LA, Hong ZL, Wu NQ (2011) Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J Phys Chem Lett 2:2125–2129CrossRefGoogle Scholar
  46. 46.
    Kang T, Kim HC, Joo SW, Lee SY, Ahn IS, Yoon KA, Lee K (2013) Optimization of energy transfer between quantum dots and gold nanoparticles in head-to-head configuration for detection of fusion gene. Sens Actuator B-Chem 188:729–734CrossRefGoogle Scholar
  47. 47.
    Jenkins R, Burdette MK, Foulger SH (2016) Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Adv 6:65459–65474Google Scholar
  48. 48.
    Zhao XJ, Tapec-Dytioco R, Tan WH (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474–11475CrossRefGoogle Scholar
  49. 49.
    Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43:4243–4268CrossRefGoogle Scholar
  50. 50.
    Zhou XC, Zhou JZ (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal Chem 76:5302–5312CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations