Sandwich Assays Based on SPR, SERS, GMR, QCM, Microcantilever, SAW, and RRS Techniques for Protein Detection

  • Shenshan Zhan
  • Xiaoding LouEmail author
  • Pei Zhou
  • Fan Xia


Among the methods developed for protein sandwich assays, the strategies based on fluorescence, electrochemistry, and color change occupy the predominant portion. However, besides these three major types, there are some other techniques, such as use of surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), giant magnetoresistive (GMR), quartz crystal microbalance (QCM), microcantilever, surface acoustic wave (SAW), and resonance Rayleigh scattering (RRS), which also play a very important role in the development of the sandwich assay for protein detection. Through integrating different recognition molecules, such as antibodies and aptamers, with conventional or new immerging sensing platforms, these assays exhibit excellent comparable sensitivities and specificities and attract extensive attention. Thus, in this chapter, some recent advances in these fields are summarized and concluding remarks on parts of which should be improved as well as outlook are outlined.


Protein detection Sandwich assays Surface plasmon resonance Surface-enhanced Raman scattering Giant magnetoresistive Quartz crystal microbalance Microcantilever Surface acoustic wave Resonance Rayleigh scattering 


  1. 1.
    Rothenhäusler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617CrossRefGoogle Scholar
  2. 2.
    Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2013) Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol Int 62:163–169CrossRefGoogle Scholar
  3. 3.
    Shabani A, Tabrizian M (2013) Design of a universal biointerface for sensitive, selective, and multiplex detection of biomarkers using surface plasmon resonance imaging. Analyst 138:6052–6062CrossRefGoogle Scholar
  4. 4.
    D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584CrossRefGoogle Scholar
  5. 5.
    Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–824CrossRefGoogle Scholar
  6. 6.
    Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRefGoogle Scholar
  7. 7.
    Altintas Z, Uludag Y, Gurbuz Y, Tothill IE (2011) Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen. Talanta 86:377–383CrossRefGoogle Scholar
  8. 8.
    Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici NAP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Opt Express 15:8163–8169CrossRefGoogle Scholar
  9. 9.
    Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5:4858–4864CrossRefGoogle Scholar
  10. 10.
    Pawula M, Altintas Z, Tothill IE (2016) SPR detection of cardiac troponin T for acute myocardial infarction. Talanta 146:823–830CrossRefGoogle Scholar
  11. 11.
    Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI (2013) Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal Chim Acta 759:105–109CrossRefGoogle Scholar
  12. 12.
    Lu JD, Van Stappen T, Spasic D, Delport F, Vermeire S, Gils A, Lammertyn J (2016) Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron 79:173–179CrossRefGoogle Scholar
  13. 13.
    Wu Q, Li S, Sun Y, Wang JN (2017) Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I. Microchim Acta 184:2395–2402CrossRefGoogle Scholar
  14. 14.
    Wang Y, Dostalek J, Knoll W (2011) Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal Chem 83:6202–6207CrossRefGoogle Scholar
  15. 15.
    Guo XW (2014) Fe3O4@Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay. Sens Actuators B: Chem 205:276–280CrossRefGoogle Scholar
  16. 16.
    Jatschka J, Dathe A, Csáki A, Fritzsche W, Stranik O (2016) Propagating and localized surface plasmon resonance sensing-A critical comparison based on measurements and theory. Sens Bio-Sens Res 7:62–70CrossRefGoogle Scholar
  17. 17.
    Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571CrossRefGoogle Scholar
  18. 18.
    Bai YF, Feng F, Zhao L, Wang CY, Wang HY, Tian MZ, Qin J, Duan Y, He XX (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron 47:265–270CrossRefGoogle Scholar
  19. 19.
    Tan WH, Donovan MJ, Jiang JH (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862CrossRefGoogle Scholar
  20. 20.
    Sim HR, Wark AW, Lee HJ (2010) Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Analyst 135:2528–2532CrossRefGoogle Scholar
  21. 21.
    Kim S, Lee HJ (2015) Direct detection of α-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay. Anal Chem 87:7235–7240CrossRefGoogle Scholar
  22. 22.
    Mir M, Vreeke M, Katakis I (2006) Different strategies to develop an electrochemical thrombin aptasensor. Electrochem Commun 8:505–511CrossRefGoogle Scholar
  23. 23.
    Vance SA, Sandros MG (2014) Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci Rep 4:5129CrossRefGoogle Scholar
  24. 24.
    Nguyen VT, Seo HB, Kim BC, Kim SK, Song CS, Gu MB (2016) Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron 86:293–300CrossRefGoogle Scholar
  25. 25.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271CrossRefGoogle Scholar
  26. 26.
    Guo LH, Kim DH (2012) LSPR biomolecular assay with high sensitivity induced by aptamer-antigen-antibody sandwich complex. Biosens Bioelectron 31:567–570CrossRefGoogle Scholar
  27. 27.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  28. 28.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  29. 29.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  30. 30.
    Yuan YF, Panwar N, Yap SHK, Wu Q, Zeng SW, Xu JH, Tjin SC, Song J, Qu J, Yong KT (2017) SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coordin Chem Rev 337:1–33CrossRefGoogle Scholar
  31. 31.
    Wang ZY, Zong SF, Wu L, Zhu D, Cui YP (2017) SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev 117:7910–7963CrossRefGoogle Scholar
  32. 32.
    Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727CrossRefGoogle Scholar
  33. 33.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  34. 34.
    Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N (2014) Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain Chem Eng 2:887–896CrossRefGoogle Scholar
  35. 35.
    Wang Y, Tang LJ, Jiang JH (2013) Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles. Anal Chem 85:9213–9220CrossRefGoogle Scholar
  36. 36.
    Fu XL, Chen LX, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137CrossRefGoogle Scholar
  37. 37.
    Han XX, Kitahama Y, Itoh T, Wang CX, Zhao B, Ozaki Y (2009) Protein-mediated sandwich strategy for surface-enhanced Raman scattering: application to versatile protein detection. Anal Chem 81:3350–3355CrossRefGoogle Scholar
  38. 38.
    Chon H, Lim C, Ha SM, Ahn Y, Lee EK, Chang SI, Seong GH, Choo J (2010) On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82:5290–5295CrossRefGoogle Scholar
  39. 39.
    Li M, Cushing SK, Zhang JM, Suri S, Evans R, Petros WP, Gibson LF, Ma DL, Liu YX, Wu NQ (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7:4967–4976CrossRefGoogle Scholar
  40. 40.
    Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem 91:634–643CrossRefGoogle Scholar
  41. 41.
    Hwang H, Chon H, Choo J, Park JK (2010) Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. Anal Chem 82:7603–7610CrossRefGoogle Scholar
  42. 42.
    Liang JJ, Liu HW, Huang CH, Yao CZ, Fu QQ, Li XQ, Cao DL, Luo Z, Tang Y (2015) Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Anal Chem 87:5790–5796CrossRefGoogle Scholar
  43. 43.
    Wang YQ, Yan B, Chen LX (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113:1391–1428CrossRefGoogle Scholar
  44. 44.
    Guarrotxena N, Bazan GC (2014) Antitags: SERS-encoded nanoparticle assemblies that enable single-spot multiplex protein detection. Adv Mater 26:1941–1946CrossRefGoogle Scholar
  45. 45.
    Fabris L, Dante M, Nguyen T-Q, Tok JBH, Bazan GC (2008) SERS aptatags: new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy. Adv Funct Mater 18:2518–2525CrossRefGoogle Scholar
  46. 46.
    Zengin A, Tamer U, Caykara T (2015) Fabrication of a SERS based aptasensor for detection of ricin B toxin. J Mater Chem B 3:306–315CrossRefGoogle Scholar
  47. 47.
    Ye J, Chen Y, Liu Z (2014) A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angew Chem Int Ed 53:10386–10389CrossRefGoogle Scholar
  48. 48.
    Yang X, Gu C, Qian F, Li Y, Zhang JZ (2011) Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem 83:5888–5894CrossRefGoogle Scholar
  49. 49.
    Zeng H, Sun SH (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400CrossRefGoogle Scholar
  50. 50.
    Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 81:3029–3034CrossRefGoogle Scholar
  51. 51.
    Cheng ZY, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen LX, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933CrossRefGoogle Scholar
  52. 52.
    Li J, Skeete Z, Shan SY, Yan S, Kurzatkowska K, Zhao W, Ngo QM, Holubovska P, Luo J, Hepel M, Zhong CJ (2015) Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal Chem 87:10698–10702CrossRefGoogle Scholar
  53. 53.
    Song CY, Yang YJ, Yang BY, Min LH, Wang LH (2016) Combination assay of lung cancer associated serum markers using surface-enhanced Raman spectroscopy. J Mater Chem B 4:1811–1817CrossRefGoogle Scholar
  54. 54.
    Liu H-L, Nosheen F, Wang X (2015) Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev 44:3056–3078CrossRefGoogle Scholar
  55. 55.
    Kong XM, Yu Q, Zhang XF, Du XZ, Gong H, Jiang H (2012) Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J Mater Chem 22:7767–7774CrossRefGoogle Scholar
  56. 56.
    Hu PP, Liu H, Zhan L, Zheng LL, Huang CZ (2015) Coomassie brilliant blue R-250 as a new surface-enhanced Raman scattering probe for prion protein through a dual-aptamer mechanism. Talanta 139:35–39CrossRefGoogle Scholar
  57. 57.
    Wu L, Wang ZY, Fan KQ, Zong SF, Cui YP (2015) A SERS-assisted 3d barcode chip for high-throughput biosensing. Small 11:2798–2806CrossRefGoogle Scholar
  58. 58.
    Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475CrossRefGoogle Scholar
  59. 59.
    Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830CrossRefGoogle Scholar
  60. 60.
    Cubells-Beltrán MD, Reig C, Madrenas J, De Marcellis A, Santos J, Cardoso S, Freitas P (2016) Integration of GMR sensors with different technologies. Sens-Basel 16:939CrossRefGoogle Scholar
  61. 61.
    Reig C, Cardoso S, Mukhopadhyay S (2013) Giant magnetoresistance (GMR) sensors: from basis to state-of-the-art applications. Springer, HeidelbergCrossRefGoogle Scholar
  62. 62.
    Fishbein I, Levy RJ (2009) Analytical chemistry: the matrix neutralized. Nature 461:890–891CrossRefGoogle Scholar
  63. 63.
    Krishna VD, Wu K, Perez AM, Wang JP (2016) Giant magnetoresistance-based biosensor for detection of influenza A virus. Front Microbiol 7:400CrossRefGoogle Scholar
  64. 64.
    Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  65. 65.
    Wang Y, Wang W, Yu L, Tu L, Feng YL, Klein T, Wang JP (2015) Giant magnetoresistive-based biosensing probe station system for multiplex protein assays. Biosens Bioelectron 70:61–68CrossRefGoogle Scholar
  66. 66.
    Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344CrossRefGoogle Scholar
  67. 67.
    Gaster RS, Hall DA, Nielsen CH, Osterfeld SJ, Yu H, Mach KE, Wilson RJ, Murmann B, Liao JC, Gambhir SS, Wang SX (2009) Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med 15:1327–1332CrossRefGoogle Scholar
  68. 68.
    Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP (2009) A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed 48:2764–2767CrossRefGoogle Scholar
  69. 69.
    Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG (2010) Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc 132:4388–4392CrossRefGoogle Scholar
  70. 70.
    Srinivasan B, Li YP, Jing Y, Xing CG, Slaton J, Wang JP (2011) A three-layer competition-based giant magnetoresistive assay for direct quantification of endoglin from human urine. Anal Chem 83:2996–3002CrossRefGoogle Scholar
  71. 71.
    Ivanov K, Kolev N, Tonev A, Nikolova G, Krasnaliev I, Softova E, Tonchev A (2009) Comparative analysis of prognostic significance of molecular markers of apoptosis with clinical stage and tumor differentiation in patients with colorectal cancer: a single institute experience. Hepato-Gastroentero 56:94–98Google Scholar
  72. 72.
    Madu CO, Lu Y (2010) Novel diagnostic biomarkers for prostate cancer. J Cancer 1:150–177CrossRefGoogle Scholar
  73. 73.
    Yang Z, Liu Y, Lei C, Sun XC, Zhou Y (2015) A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein. Microchim Acta 182:2411–2417CrossRefGoogle Scholar
  74. 74.
    Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han SJ, Hall DA, Wilson RJ, Sun SH, White RL, Davis RW, Pourmand N, Wang SX (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc Natl Acad Sci USA 105:20637–20640CrossRefGoogle Scholar
  75. 75.
    Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25:1635–1639CrossRefGoogle Scholar
  76. 76.
    Ng E, Nadeau KC, Wang SX (2016) Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosens Bioelectron 80:359–365CrossRefGoogle Scholar
  77. 77.
    Choi J, Gani AW, Bechstein DJB, Lee JR, Utz PJ, Wang SX (2016) Portable, one-step, and rapid GMR biosensor platform with smartphone interface. Biosens Bioelectron 85:1–7CrossRefGoogle Scholar
  78. 78.
    He P, Liu LJ, Qiao WP, Zhang SS (2014) Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun 50:1481–1484CrossRefGoogle Scholar
  79. 79.
    Cheng CI, Chang YP, Chu YH (2012) Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 41:1947–1971CrossRefGoogle Scholar
  80. 80.
    Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184CrossRefGoogle Scholar
  81. 81.
    Henne WA, Doorneweerd DD, Lee J, Low PS, Savran C (2006) Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Anal Chem 78:4880–4884CrossRefGoogle Scholar
  82. 82.
    Lei JP, Ju HX (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134CrossRefGoogle Scholar
  83. 83.
    Chen Q, Tang W, Wang DZ, Wu XJ, Li N, Liu F (2010) Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Biosens Bioelectron 26:575–579CrossRefGoogle Scholar
  84. 84.
    Ogi H, Yanagida T, Hirao M, Nishiyama M (2011) Replacement-free mass-amplified sandwich assay with 180-MHz electrodeless quartz-crystal microbalance biosensor. Biosens Bioelectron 26:4819–4822CrossRefGoogle Scholar
  85. 85.
    Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M (2014) Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 43:887–900CrossRefGoogle Scholar
  86. 86.
    Alfonta L, Willner I, Throckmorton DJ, Singh AK (2001) Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Anal Chem 73:5287–5295CrossRefGoogle Scholar
  87. 87.
    Deng Y, Yue XL, Hu H, Zhou XD (2017) A new analytical experimental setup combining quartz crystal microbalance with surface enhancement Raman spectroscopy and its application in determination of thrombin. Microchem J 132:385–390CrossRefGoogle Scholar
  88. 88.
    Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904CrossRefGoogle Scholar
  89. 89.
    Zhu Q (2011) Microcantilever sensors in biological and chemical detections. Sens transducers 125:1–21Google Scholar
  90. 90.
    Kosaka PM, Pini V, Ruz JJ, da Silva RA, González MU, Ramos D, Calleja M, Tamayo J (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nano 9:1047–1053CrossRefGoogle Scholar
  91. 91.
    Etayash H, McGee AR, Kaur K, Thundat T (2016) Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. Nanoscale 8:15137–15141CrossRefGoogle Scholar
  92. 92.
    Longo G (2014) Cancer biomarkers: detected twice for good measure. Nat Nano 9:959–960CrossRefGoogle Scholar
  93. 93.
    Lee D, Kwon D, Ko W, Joo J, Seo H, Lee SS, Jeon S (2012) A rapid and facile signal enhancement method for microcantilever-based immunoassays using the agglomeration of ferromagnetic nanoparticles. Chem Commun 48:7182–7184CrossRefGoogle Scholar
  94. 94.
    Joo J, Kwon D, Yim C, Jeon S (2012) Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. ACS Nano 6:4375–4381CrossRefGoogle Scholar
  95. 95.
    Lee J, Choi YS, Lee Y, Lee HJ, Lee JN, Kim SK, Han KY, Cho EC, Park JC, Lee SS (2011) Sensitive and simultaneous detection of cardiac markers in human serum using surface acoustic wave immunosensor. Anal Chem 83:8629–8635CrossRefGoogle Scholar
  96. 96.
    Zhang X, Zou YC, An C, Ying KJ, Chen X, Wang P (2015) Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sens Actuators B: Chem 217:100–106CrossRefGoogle Scholar
  97. 97.
    Salehi-Reyhani A, Gesellchen F, Mampallil D, Wilson R, Reboud J, Ces O, Willison KR, Cooper JM, Klug DR (2015) Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays. Anal Chem 87:2161–2169CrossRefGoogle Scholar
  98. 98.
    Lu Y, Huang XY, Ren JC (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180:635–642CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shenshan Zhan
    • 1
  • Xiaoding Lou
    • 1
    • 2
    Email author
  • Pei Zhou
    • 3
  • Fan Xia
    • 1
    • 2
  1. 1.Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  3. 3.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations