Electrochemical Sandwich Assays for Protein Detection

  • Hui LiEmail author
  • Shaoguang Li
  • Fan Xia


Rapid, sensitive, and selective detection of proteins biomarker plays a very important role in early diagnostics of diseases and global health. Toward this goal, numerous researchers have devoted great efforts to develop a variety of approaches for protein detections, among which electrochemical sandwich assay appears as a very promising one because their signaling mechanism between redox-active tags and electrode renders this approach to be highly sensitive and selective, rapid, miniaturizable, and cost-effective. As such, this electron communicating signal can be readily amplified by employing enzymatic catalyst reaction, metal nanoparticles, carbon-based nanomaterials, and many other strategies, in support to further improve the sensitivity of this sensing platform.


Electrochemical biosensor Sandwich assay Protein detection Electrochemical aptasensor Signal amplification 


  1. 1.
    Smith RA, Cokkinides V, Brawley OW (2008) Cancer screening in the United States, 2008: a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 58:161–179CrossRefGoogle Scholar
  2. 2.
    Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37:S34–S45CrossRefGoogle Scholar
  3. 3.
    Rong Q, Feng F, Ma Z (2016) Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron 75:148–154CrossRefGoogle Scholar
  4. 4.
    Shen J, Li Y, Gu H, Xia F, Zuo X (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  5. 5.
    Bonham AJ, Hsieh K, Ferguson BS, Vallee-Belisle A, Ricci F, Soh HT, Plaxco KW (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348CrossRefGoogle Scholar
  6. 6.
    Guiseppi-Elie A, Lingerfelt L (2005) Impedimetric detection of DNA hybridization: towards near-patient DNA diagnostics. Top Curr Chem 260:161–186CrossRefGoogle Scholar
  7. 7.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458CrossRefGoogle Scholar
  8. 8.
    Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRefGoogle Scholar
  9. 9.
    Feng LN, Bian ZP, Peng J, Jiang F, Yang GH, Zhu YD, Yang D, Jiang LP, Zhu JJ (2012) Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal Chem 84:7810–7815CrossRefGoogle Scholar
  10. 10.
    Solanki PR, Patel MK, Ali MA, Malhotra BD (2015) A chitosan modified nickel oxide platform for biosensing applications. J Mater Chem B 3:6698–6708CrossRefGoogle Scholar
  11. 11.
    Zuo XL, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131:6944–6945CrossRefGoogle Scholar
  12. 12.
    Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Curr Opin Chem Biol 16:422–428CrossRefGoogle Scholar
  13. 13.
    Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S, Yang H (2011) Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Anal Chem 83:3926–3933CrossRefGoogle Scholar
  14. 14.
    Du D, Wang LM, Shao YY, Wang J, Engelhard MH, Lin YH (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752CrossRefGoogle Scholar
  15. 15.
    Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi M-R (2015) A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 5:58316–58326CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Zheng YQ, Kong RM, Xia L, Qu FL (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388CrossRefGoogle Scholar
  17. 17.
    Rusling JF, Bishop GW, Doan NM, Papadimitrakopoulos F (2014) Nanomaterials and biomaterials in electrochemical arrays for protein detection. J Mater Chem B 2:12–30CrossRefGoogle Scholar
  18. 18.
    Qin XL, Liu L, Xu AG, Wang LC, Tan YM, Chen C, Xie QJ (2016) Ultrasensitive immunoassay of proteins based on gold label/silver staining, galvanic replacement reaction enlargement, and in situ microliter-droplet anodic stripping voltammetry. J Phys Chem C 120:2855–2865CrossRefGoogle Scholar
  19. 19.
    Peng J, Feng LN, Ren ZJ, Jiang LP, Zhu JJ (2011) Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6. Small 7:2921–2928CrossRefGoogle Scholar
  20. 20.
    Kong FY, Xu BY, Xu JJ, Chen HY (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182CrossRefGoogle Scholar
  21. 21.
    You M, Yang SA, Tang WX, Zhang F, He PG (2017) Ultrasensitive electrochemical detection of glycoprotein based on boronate affinity sandwich assay and signal amplification with functionalized SiO2@Au nanocomposites. ACS Appl Mater Interfaces 9:13855–13864CrossRefGoogle Scholar
  22. 22.
    Wang ZF, Liu N, Ma ZF (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329CrossRefGoogle Scholar
  23. 23.
    Tang ZX, Ma ZF (2016) Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe. Sci Rep 6:35440CrossRefGoogle Scholar
  24. 24.
    Das J, Aziz MA, Yang H (2006) A Nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc 128:16022–16023CrossRefGoogle Scholar
  25. 25.
    Cui ZT, Wu D, Zhang Y, Ma HM, Li H, Du B, Wei Q, Ju HX (2014) Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels. Anal Chim Acta 807:44–50CrossRefGoogle Scholar
  26. 26.
    Xu QN, Wang LS, Lei JP, Deng SY, Ju HX (2013) Platinum nanodendrite functionalized graphene nanosheets as a non-enzymatic label for electrochemical immunosensing. J Mater Chem B 1:5347–5352CrossRefGoogle Scholar
  27. 27.
    Tang J, Zhou J, Li Q, Tang D, Chen G, Yang H (2013) In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem Commun 49:1530–1532CrossRefGoogle Scholar
  28. 28.
    Fu XH, Huang R, Wang JX, Feng XR (2013) Platinum nanoflower-based catalysts for an enzyme-free electrochemical immunoassay of neuron-specific enolase. Anal Methods 5:3803–3806CrossRefGoogle Scholar
  29. 29.
    Zhang J, Ting BP, Khan M, Pearce MC, Yang YY, Gao ZQ, Ying JY (2010) Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens Bioelectron 26:418–423CrossRefGoogle Scholar
  30. 30.
    Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E, O’Kennedy R, Forster RJ (2016) Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens Bioelectron 77:759–766CrossRefGoogle Scholar
  31. 31.
    Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80CrossRefGoogle Scholar
  32. 32.
    Lai GS, Zhang HL, Yong J, Yu AM (2013) In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosens Bioelectron 47:178–183CrossRefGoogle Scholar
  33. 33.
    Yan ZQ, Ma HM, Fan DW, Hu LH, Pang XH, Gao J, Wei Q, Wang Q (2016) An ultrasensitive sandwich-type electrochemical immunosensor for carcino embryonie antigen based on supermolecular labeling strategy. J Electroanal Chem 781:289–295CrossRefGoogle Scholar
  34. 34.
    Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A (2015) Ultrasensitive electrochemical immunosensor for detection of tumor necrosis factor-α based on functionalized MWCNT-gold nanoparticle/Ionic liquid nanocomposite. Electroanalysis 27:2518–2526CrossRefGoogle Scholar
  35. 35.
    Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134CrossRefGoogle Scholar
  36. 36.
    Malhotra R, Patel V, Vaqué JP, Gutkind JS, Rusling JF (2010) Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem 82:3118–3123CrossRefGoogle Scholar
  37. 37.
    Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRefGoogle Scholar
  38. 38.
    Zhou M, Sun ZF, Shen CC, Li ZY, Zhang Y, Yang MH (2013) Application of hydrogel prepared from ferrocene functionalized amino acid in the design of novel electrochemical immunosensing platform. Biosens Bioelectron 49:243–248CrossRefGoogle Scholar
  39. 39.
    Lai GS, Wu J, Ju HX, Yan F (2011) Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater 21:2938–2943CrossRefGoogle Scholar
  40. 40.
    Qin XL, Xu AG, Liu L, Deng WF, Chen C, Tan YM, Fu YC, Xie QJ, Yao SZ (2015) Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem Commun 51:8540–8543CrossRefGoogle Scholar
  41. 41.
    Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive Immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205CrossRefGoogle Scholar
  42. 42.
    Wu D, Wang YG, Zhang Y, Ma HM, Yan T, Du B, Wei Q (2016) Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 supported Pd/Co nanoparticles. Sci Rep 6:24551CrossRefGoogle Scholar
  43. 43.
    Zhou SW, Wang YY, Zhu JJ (2016) Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and Bax through a dual-signal-marked electrochemical immunosensor. ACS Appl Mater Interfaces 8:7674–7682CrossRefGoogle Scholar
  44. 44.
    Qin XL, Xu AG, Liu L, Sui YY, Li YL, Tan YM, Chen C, Xie QJ (2017) Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 91:321–327CrossRefGoogle Scholar
  45. 45.
    Lin DJ, Wu J, Ju HX, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158CrossRefGoogle Scholar
  46. 46.
    Wang GN, Li YK, Liu JL, Yuan YJ, Shen ZL, Mei XF (2017) Ultrasensitive multiplexed immunoassay of autophagic biomarkers based on Au/rGO and Au nanocages amplifying electrochemcial signal. Sci Rep 7:2442CrossRefGoogle Scholar
  47. 47.
    Huang JL, Tian JN, Zhao YC, Zhao SL (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens Actuators B-Chem 206:570–576CrossRefGoogle Scholar
  48. 48.
    Li L, Zhang LN, Yu JH, Ge SG, Song XR (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114CrossRefGoogle Scholar
  49. 49.
    Wang D, Gan N, Zhang HR, Li TH, Qiao L, Cao YT, Su XR, Jiang S (2015) Simultaneous electrochemical immunoassay using graphene–Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 65:78–82CrossRefGoogle Scholar
  50. 50.
    Wen JL, Zhou SG, Yuan Y (2014) Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy. Biosens Bioelectron 52:44–49CrossRefGoogle Scholar
  51. 51.
    Li MD, Wang P, Li FY, Chu QY, Li YY, Dong YH (2017) An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens Bioelectron 87:752–759CrossRefGoogle Scholar
  52. 52.
    Luo Y, Asiri AM, Zhang X, Yang GH, Du D, Lin Y (2014) A magnetic electrochemical immunosensor for the detection of phosphorylated p53 based on enzyme functionalized carbon nanospheres with signal amplification. RSC Adv 4:54066–54071CrossRefGoogle Scholar
  53. 53.
    Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, Korecká L (2015) Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Anal Biochem 484:4–8CrossRefGoogle Scholar
  54. 54.
    Zarei H, Ghourchian H, Eskandari K, Zeinali M (2012) Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446–453CrossRefGoogle Scholar
  55. 55.
    de Souza Castilho M, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum Histidine-Rich Protein 2 related to malaria based on magnetic nanoparticles. Anal Chem 83:5570–5577CrossRefGoogle Scholar
  56. 56.
    Yang ZH, Zhuo Y, Yuan R, Chai YQ (2016) Highly effective protein converting strategy for ultrasensitive electrochemical assay of Cystatin C. Anal Chem 88:5189–5196CrossRefGoogle Scholar
  57. 57.
    Zhang HF, Ma LN, Li PL, Zheng JB (2016) A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 85:343–350CrossRefGoogle Scholar
  58. 58.
    Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRefGoogle Scholar
  59. 59.
    Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F, Torrente-Rodríguez RM, Gamella M, Reviejo AJ, Pingarrón JM (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162CrossRefGoogle Scholar
  60. 60.
    Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Pedrero M, Farchado M, Vargas E, Manuel de Villena FJ, Garranzo-Asensio M, Barderas R, Pingarrón JM (2017) Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS ONE 12:e0175056CrossRefGoogle Scholar
  61. 61.
    Pedrero M, Manuel de Villena FJ, Muñoz-San Martín C, Campuzano S, Garranzo-Asensio M, Barderas R, Pingarrón JM (2016) Disposable amperometric immunosensor for the determination of human P53 Protein in cell lysates using magnetic micro-carriers. Biosensors 6:56CrossRefGoogle Scholar
  62. 62.
    Lai GS, Zheng M, Hu WJ, Yu AM (2017) One-pot loading high-content thionine on polydopamine-functionalized mesoporous silica nanosphere for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 95:15–20CrossRefGoogle Scholar
  63. 63.
    Ge XX, Zhang AD, Lin YH, Du D (2016) Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 80:201–207CrossRefGoogle Scholar
  64. 64.
    Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673CrossRefGoogle Scholar
  65. 65.
    Tang J, Tang DP, Niessner R, Chen GN, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407–5414CrossRefGoogle Scholar
  66. 66.
    Wang Q, Gan XX, Zang RH, Chai YQ, Yuan YL, Yuan R (2016) An amplified electrochemical proximity immunoassay for the total protein of Nosema bombycis based on the catalytic activity of Fe3O4NPs towards methylene blue. Biosens Bioelectron 81:382–387CrossRefGoogle Scholar
  67. 67.
    Guo JJ, Wang JC, Zhao JQ, Guo ZL, Zhang YZ (2016) Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal. ACS Appl Mater Interfaces 8:6898–6904CrossRefGoogle Scholar
  68. 68.
    Zhuo Y, Han J, Yu YQ, Chai YQ, Yuan R (2014) Signal amplification strategy with synergistic catalysis of hollow Pt nanochains and hemoglobin for electrochemical immunosensor. J Electrochem Soc 161:B26–B30CrossRefGoogle Scholar
  69. 69.
    Ge YQ, Wu J, Ju HX, Wu S (2014) Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag. Talanta 120:218–223CrossRefGoogle Scholar
  70. 70.
    Zhou J, Lai WQ, Zhuang JY, Tang J, Tang DP (2013) Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces 5:2773–2781CrossRefGoogle Scholar
  71. 71.
    Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399CrossRefGoogle Scholar
  72. 72.
    Song C, Xie GM, Wang L, Liu LZ, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74CrossRefGoogle Scholar
  73. 73.
    Pei XM, Xu ZH, Zhang JY, Liu Z, Tian JN (2013) Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 3:16410–16415CrossRefGoogle Scholar
  74. 74.
    Sun AL (2015) Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction. Analyst 140:7948–7954CrossRefGoogle Scholar
  75. 75.
    Jing P, Yi HY, Xue SY, Chai YQ, Yuan R, Xu WJ (2015) A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Anal Chim Acta 853:234–241CrossRefGoogle Scholar
  76. 76.
    Salimi A, Khezrian S, Hallaj R, Vaziry A (2014) Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal Biochem 466:89–97CrossRefGoogle Scholar
  77. 77.
    Zhao JM, Zheng T, Gao JX, Guo SJ, Zhou XX, Xu WJ (2017) A sub-picomolar assay for protein by using cubic Cu2O nanocages loaded with Au nanoparticles as robust redox probes and efficient non-enzymatic electrocatalysts. Analyst 142:794–799CrossRefGoogle Scholar
  78. 78.
    Song W, Li H, Liang H, Qiang WB, Xu DK (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86:2775–2783CrossRefGoogle Scholar
  79. 79.
    Ocaña C, del Valle M (2014) Signal amplification for thrombin impedimetric aptasensor: Sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron 54:408–414CrossRefGoogle Scholar
  80. 80.
    Song W, Niu QQ, Qiang WB, Li H, Xu DK (2016) Enzyme-free electrochemical aptasensor by using silver nanoparticles aggregates coupling with carbon nanotube inducing signal amplification through electrodeposition. J Electroanal Chem 781:62–69CrossRefGoogle Scholar
  81. 81.
    Wang Y, He X, Wang K, Ni X, Su J, Chen Z (2011) Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens Bioelectron 26:3536–3541CrossRefGoogle Scholar
  82. 82.
    Bai LJ, Chen YH, Bai Y, Chen YJ, Zhou J, Huang AL (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19CrossRefGoogle Scholar
  83. 83.
    Wang QQ, Zhou ZX, Zhai YL, Zhang LL, Hong W, Zhang ZQ, Dong SJ (2015) Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 141:247–252CrossRefGoogle Scholar
  84. 84.
    Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Săndulescu R (2014) Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem 717:119–124CrossRefGoogle Scholar
  85. 85.
    Zamay GS, Zamay TN, Kolovskii VA, Shabanov AV, Glazyrin YE, Veprintsev DV, Krat AV, Zamay SS, Kolovskaya OS, Gargaun A, Sokolov AE, Modestov AA, Artyukhov IP, Chesnokov NV, Petrova MM, Berezovski MV, Zamay AS (2016) Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci Rep 6:34350CrossRefGoogle Scholar
  86. 86.
    Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens Actuators B-Chem 209:645–651CrossRefGoogle Scholar
  87. 87.
    Ocaña C, Lukic S, del Valle M (2015) Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta 182:2045–2053CrossRefGoogle Scholar
  88. 88.
    Ocana C, Hayat A, Mishra R, Vasilescu A, del Valle M, Marty J-L (2015) A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection. Analyst 140:4148–4153CrossRefGoogle Scholar
  89. 89.
    Zhang J, Yuan YL, BiXie S, Chai YQ, Yuan R (2014) Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA–PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 60:224–230CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations