Advertisement

Sandwich Assay for Pathogen and Cells Detection

  • Shaoguang Li
  • Hui Li
  • Fan Xia
Chapter

Abstract

Sandwich assay biosensors make it possible to detect bacterial pathogens and cancer cells at extremely low level. In this chapter, we have summarized the recent developments of sandwich assay for pathogen and whole-cell detection using a variety of techniques. In particular, we highlighted some of the most common techniques in sandwich assay biosensors such as optics-based detection, electrochemistry-based detection, and mechanics-based detection.

Keywords

Whole-cell Pathogen Bacterial Signal amplification Sandwich assay 

References

  1. 1.
    Anderson NL, Anderson NG (2002) The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefGoogle Scholar
  2. 2.
    Zhang BH, Pan XP, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12CrossRefGoogle Scholar
  3. 3.
    Ahmed A, Rushworth JV, Hirst NA, Millner PA (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27:631–646CrossRefGoogle Scholar
  4. 4.
    Li BM, Yu QL, Duan YX (2015) Fluorescent labels in biosensors for pathogen detection. Crit Rev Biotechnol 35:82–93CrossRefGoogle Scholar
  5. 5.
    Burlage RS, Tillmann J (2017) Biosensors of bacterial cells. J Microbiol Methods 138:2–11CrossRefGoogle Scholar
  6. 6.
    Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251CrossRefGoogle Scholar
  7. 7.
    Kosaka PM, Pini V, Ruz JJ, da Silva RA, Gonzalez MU, Ramos D, Calleja M, Tamayo J (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol 9:1047–1053CrossRefGoogle Scholar
  8. 8.
    Hsieh K, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT (2015) Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc Chem Res 48:911–920CrossRefGoogle Scholar
  9. 9.
    Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  10. 10.
    Giri B, Pandey B, Neupane B, Ligler FS (2016) Signal amplification strategies for microfluidic immunoassays. TrAC-Trends Anal Chem 79:326–334CrossRefGoogle Scholar
  11. 11.
    Ye DK, Zuo XL, Fan CH (2017) DNA nanostructure-based engineering of the biosensing interface for biomolecular detection. Prog Chem 29:36–46Google Scholar
  12. 12.
    Zhu CZ, Yang GH, Li H, Du D, Lin YH (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  13. 13.
    Liang K, Liu F, Fan J, Sun D, Liu C, Lyon CJ, Bernard DW, Li Y, Yokoi K, Katz MH, Koay EJ, Zhao Z, Hu Y (2017) Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng 1:0021CrossRefGoogle Scholar
  14. 14.
    Blažková M, Javůrková B, Fukal L, Rauch P (2011) Immunochromatographic strip test for detection of genus Cronobacter. Biosens Bioelectron 26:2828–2834CrossRefGoogle Scholar
  15. 15.
    Sharma H, Mutharasan R (2013) hlyA gene-based sensitive detection of listeria monocytogenes using a novel cantilever sensor. Anal Chem 85:3222–3228CrossRefGoogle Scholar
  16. 16.
    Li FY, Peng J, Zheng Q, Guo X, Tang H, Yao SZ (2015) Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24. Anal Chem 87:4806–4813CrossRefGoogle Scholar
  17. 17.
    Huertas CS, Carrascosa LG, Bonnal S, Valcárcel J, Lechuga LM (2016) Quantitative evaluation of alternatively spliced mRNA isoforms by label-free real-time plasmonic sensing. Biosens Bioelectron 78:118–125CrossRefGoogle Scholar
  18. 18.
    Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. J Am Chem Soc 133:9650–9653CrossRefGoogle Scholar
  19. 19.
    Farrow B, Hong SA, Romero EC, Lai B, Coppock MB, Deyle KM, Finch AS, Stratis-Cullum DN, Agnew HD, Yang S, Heath JR (2013) A chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen. ACS Nano 7:9452–9460CrossRefGoogle Scholar
  20. 20.
    Ahmad M, Ameen S, Siddiqi TO, Khan P, Ahmad A (2016) Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor. Biosens Bioelectron 86:169–175CrossRefGoogle Scholar
  21. 21.
    Zhu LJ, He J, Cao XH, Huang KL, Luo YB, Xu WT (2016) Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food. Sci Rep 6:16092CrossRefGoogle Scholar
  22. 22.
    Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:3656–3669CrossRefGoogle Scholar
  23. 23.
    Chen ZH, Liu Y, Wang YZ, Zhao X, Li JH (2013) Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin a-integrating gold-nanoparticle-modified Ru(bpy)32+-doped silica nanoprobe. Anal Chem 85:4431–4438CrossRefGoogle Scholar
  24. 24.
    Yang HY, Li ZJ, Shan M, Li CC, Qi HL, Gao Q, Wang JY, Zhang CX (2015) Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe. Anal Chim Acta 863:1–8CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Tan C, Fei RH, Liu XX, Zhou Y, Chen J, Chen HC, Zhou R, Hu YG (2014) Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. Anal Chem 86:1115–1122CrossRefGoogle Scholar
  26. 26.
    Zhang LS, Huang R, Liu WP, Liu HX, Zhou XM, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7CrossRefGoogle Scholar
  27. 27.
    Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583CrossRefGoogle Scholar
  28. 28.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093CrossRefGoogle Scholar
  29. 29.
    Jain S, Chattopadhyay S, Jackeray R, Abid C, Kohli GS, Singh H (2012) Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosens Bioelectron 31:37–43CrossRefGoogle Scholar
  30. 30.
    Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282CrossRefGoogle Scholar
  31. 31.
    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  32. 32.
    Lu WT, Arumugam SR, Senapati D, Singh AK, Arbneshi T, Khan SA, Yu HT, Ray PC (2010) Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano 4:1739–1749CrossRefGoogle Scholar
  33. 33.
    Wu WH, Li J, Pan D, Li J, Song SP, Rong MG, Zi Li, Gao JM, Lu JX (2014) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium. ACS Appl Mater Interfaces 6:16974–16981CrossRefGoogle Scholar
  34. 34.
    de la Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824CrossRefGoogle Scholar
  35. 35.
    Chen R, Huang XL, Xu HY, Xiong YH, Li YB (2015) Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of Listeria monocytogenes. ACS Appl Mater Interfaces 7:28632–28639CrossRefGoogle Scholar
  36. 36.
    Sung D, Yang S (2014) Facile method for constructing an effective electron transfer mediating layer using ferrocene-containing multifunctional redox copolymer. Electrochim Acta 133:40–48CrossRefGoogle Scholar
  37. 37.
    Gehring AG, Brewster JD, He YP, Irwin PL, Paoli GC, Simons T, Tu SI, Uknalis J (2015) Antibody microarray for E. coli O157:H7 and shiga toxin in microtiter plates. Sensors 15:30429–30442CrossRefGoogle Scholar
  38. 38.
    Song MS, Sekhon SS, Shin WR, Kim HC, Min J, Ahn JY, Kim YH (2017) Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform. Molecules 22:825CrossRefGoogle Scholar
  39. 39.
    Demirkol DO, Timur S (2016) A sandwich-type assay based on quantum dot/aptamer bioconjugates for analysis of E. coli O157:H7 in microtiter plate format. Int J Polym Mater Polym Biomater 65:85–90CrossRefGoogle Scholar
  40. 40.
    Hu RR, Yin ZZ, Zeng YB, Zhang J, Liu HQ, Shao Y, Ren SB, Li L (2016) A novel biosensor for Escherichia coli O157:H7 based on fluorescein-releasable biolabels. Biosens Bioelectron 78:31–36CrossRefGoogle Scholar
  41. 41.
    Dogan U, Kasap E, Cetin D, Suludere Z, Boyaci IH, Turkyilmaz C, Ertas N, Tamer U (2016) Rapid detection of bacteria based on homogenous immunoassay using chitosan modified quantum dots. Sens Actuators B-Chem 233:369–378CrossRefGoogle Scholar
  42. 42.
    Kong W, Xiong J, Yue H, Fu Z (2015) Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy. Anal Chem 87:9864–9868CrossRefGoogle Scholar
  43. 43.
    Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M (2014) Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14:4948–4959CrossRefGoogle Scholar
  44. 44.
    Liu X, Hu YX, Zheng S, Liu Y, He Z, Luo F (2016) Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis. Sens Actuators B-Chem 230:191–198CrossRefGoogle Scholar
  45. 45.
    Eum NS, Yeom SH, Kwon DH, Kim HR, Kang SW (2010) Enhancement of sensitivity using gold nanorods-antibody conjugator for detection of E. coli O157:H7. Sens Actuators B-Chem 143:784–788CrossRefGoogle Scholar
  46. 46.
    Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J (2013) Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron 45:174–180CrossRefGoogle Scholar
  47. 47.
    Charlermroj R, Oplatowska M, Gajanandana O, Himananto O, Grant IR, Karoonuthaisiri N, Elliott CT (2013) Strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells. Microchim Acta 180:643–650CrossRefGoogle Scholar
  48. 48.
    Chen HX, Hou YF, Ye ZH, Wang HY, Koh K, Shen ZM, Shu YQ (2014) Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid. Sens Actuators B-Chem 201:433–438CrossRefGoogle Scholar
  49. 49.
    Mousavi M, Chen HY, Hou HS, Chang CYY, Roffler S, Wei PK, Cheng JY (2015) Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance. Biosensors 5:98–117CrossRefGoogle Scholar
  50. 50.
    Akanda MR, Tamilavan V, Park S, Jo K, Hyun MH, Yang H (2013) Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical–chemical–chemical redox cycling for the detection of E. coli O157:H7. Anal Chem 85:1631–1636CrossRefGoogle Scholar
  51. 51.
    Li Y, Fang LC, Cheng P, Deng J, Jiang LL, Huang H, Zheng JS (2013) An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 using C-60 based biocompatible platform and enzyme functionalized Pt nanochains tracing tag. Biosens Bioelectron 49:485–491CrossRefGoogle Scholar
  52. 52.
    Wang Y, Alocilja EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9:16CrossRefGoogle Scholar
  53. 53.
    Guner A, Cevik E, Senel M, Alpsoy L (2017) An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem 229:358–365CrossRefGoogle Scholar
  54. 54.
    Cheng CN, Peng Y, Bai JL, Zhang XY, Liu YY, Fan XJ, Ning BA, Gao ZX (2014) Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sens Actuators B-Chem 190:900–906CrossRefGoogle Scholar
  55. 55.
    Abbaspour A, Norouz-Sarvestani F, Noon A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155CrossRefGoogle Scholar
  56. 56.
    Chen Q, Lin JH, Gan CQ, Wang YH, Wang D, Xiong YH, Lai WH, Li YT, Wang MH (2015) A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron 74:504–511CrossRefGoogle Scholar
  57. 57.
    Fei JF, Dou WC, Zhao GY (2015) A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182:2267–2275CrossRefGoogle Scholar
  58. 58.
    Chen Q, Wang D, Cai GZ, Xiong YH, Li YT, Wang MH, Huo HL, Lin JH (2016) Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosens Bioelectron 86:770–776CrossRefGoogle Scholar
  59. 59.
    Zhu XL, Yang JH, Liu M, Wu Y, Shen ZM, Li GX (2013) Sensitive detection of human breast cancer cells based on aptamer-cell-aptamer sandwich architecture. Anal Chim Acta 764:59–63CrossRefGoogle Scholar
  60. 60.
    Zhang JJ, Cheng FF, Zheng TT, Zhu JJ (2017) Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 89:937–945CrossRefGoogle Scholar
  61. 61.
    Ge SG, Zhang Y, Zhang L, Liang LL, Liu HY, Yan M, Huang JD, Yu JH (2015) Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens Actuators B-Chem 220:665–672CrossRefGoogle Scholar
  62. 62.
    Chandra P, Noh HB, Pallela R, Shim YB (2015) Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens Bioelectron 70:418–425CrossRefGoogle Scholar
  63. 63.
    Pallela R, Chandra P, Noh HB, Shim YB (2016) An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens Bioelectron 85:883–890CrossRefGoogle Scholar
  64. 64.
    Salam F, Uludag Y, Tothill IE (2013) Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta 115:761–767CrossRefGoogle Scholar
  65. 65.
    Masdor NA, Altintas Z, Tothill IE (2016) Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens Bioelectron 78:328–336CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations