Advertisement

Sandwich Assays for Small Molecule and Ion Detection

  • Yu Dai
  • Xiaojin Zhang
  • Fan Xia
Chapter

Abstract

Small molecules and ions play a critical role in biological and environmental systems. The detection of small molecules and ions is a significantly important issue and still a challenge in analytical chemistry. In the past decade, large attention has been paid to the detection of small molecules and ions based on sandwich assays due to their high sensitivity and selectivity. In this chapter, we summarize some sandwich assays for the detection of small molecules and ions that were proposed in recent years. The detection techniques afforded in the sandwich assays for the detection of small molecules and ions include electrochemical method, electrochemiluminescence method, fluorescence method, colorimetric method, and some other methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and quartz crystal microbalance (QCM).

Keywords

Small molecules and ions Sandwich assays Electrochemical method Electrochemiluminescence method Fluorescence method Colorimetric method 

References

  1. 1.
    Wang XH, Wang S (2008) Sensors and biosensors for the determination of small molecule biological toxins. Sensors 8:6045–6054CrossRefGoogle Scholar
  2. 2.
    Wang HM, Feng ZQQ, Xu B (2017) Bioinspired assembly of small molecules in cell milieu. Chem Soc Rev 46:2421–2436CrossRefGoogle Scholar
  3. 3.
    Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433CrossRefGoogle Scholar
  4. 4.
    Feng CJ, Dai S, Wang L (2014) Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 59:64–74CrossRefGoogle Scholar
  5. 5.
    Qian XH, Xu ZC (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44:4487–4493CrossRefGoogle Scholar
  6. 6.
    Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429CrossRefGoogle Scholar
  7. 7.
    Duong TQ, Kim JS (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301CrossRefGoogle Scholar
  8. 8.
    Liu Y, Deng Y, Dong HM, Liu KK, He NY (2017) Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Sci China-Chem 60:329–337CrossRefGoogle Scholar
  9. 9.
    Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuator B-Chem 213:515–533CrossRefGoogle Scholar
  10. 10.
    Zuo XL, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131:6944–6945CrossRefGoogle Scholar
  11. 11.
    Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, Xu Q, Wang X, Lou XH, He M, Xiao Y (2015) Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem 87:7712–7719CrossRefGoogle Scholar
  12. 12.
    Zhang HX, Jiang BY, Xiang Y, Zhang YY, Chai YQ, Yuan R (2011) Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Anal Chim Acta 688:99–103CrossRefGoogle Scholar
  13. 13.
    Yan ZD, Xiong P, Gan N, He JL, Long NB, Cao YT, Hu FT, Li TH (2015) A novel sandwich-type noncompetitive immunoassay of diethylstilbestrol using beta-cyclodextrin modified electrode and polymer-enzyme labels. J Electroanal Chem 736:30–37CrossRefGoogle Scholar
  14. 14.
    Lee J, Jo M, Kim TH, Ahn JY, Lee DK, Kim S, Hong S (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11:52–56CrossRefGoogle Scholar
  15. 15.
    Li LL, Chen Y, Zhu JJ (2017) Recent advances in electrochemiluminescence analysis. Anal Chem 89:358–371CrossRefGoogle Scholar
  16. 16.
    Zhou XM, Duan RX, Xing D (2012) Highly sensitive detection of protein and small molecules based on aptamer-modified electrochemiluminescence nanoprobe. Analyst 137:1963–1969CrossRefGoogle Scholar
  17. 17.
    Li M, Yang HM, Ma C, Zhang Y, Ge SG, Yu JH, Yan M (2014) A sensitive signal-off aptasensor for adenosine triphosphate based on the quenching of Ru(bpy)32+-doped silica nanoparticles electrochemiluminescence by ferrocene. Sens Actuator B-Chem 191:377–383CrossRefGoogle Scholar
  18. 18.
    Zuo FM, Jin L, Fu XM, Zhang H, Yuan R, Chen SH (2017) An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sens Actuator B-Chem 244:282–289CrossRefGoogle Scholar
  19. 19.
    Sapsford KE, Berti L, Medintz IL (2004) Fluorescence resonance energy transfer—concepts, applications and advances. Minerva Biotechnol 16:247–273Google Scholar
  20. 20.
    Chen GW, Song FL, Xiong XQ, Peng XJ (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245CrossRefGoogle Scholar
  21. 21.
    He XX, Li ZX, Jia XK, Wang KM, Yin JJ (2013) A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta 111:105–110CrossRefGoogle Scholar
  22. 22.
    Bai WH, Zhu C, Liu JC, Yan MM, Yang SM, Chen AL (2016) Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone. Microchim Acta 183:2533–2538CrossRefGoogle Scholar
  23. 23.
    Kim HJ, McCoy M, Gee SJ, Gonzalez-Sapienza GG, Hammock BD (2011) Noncompetitive phage anti-immunocomplex real-time polymerase chain reaction for sensitive detection of small molecules. Anal Chem 83:246–253CrossRefGoogle Scholar
  24. 24.
    Dong JH, Hasan S, Fujioka Y, Ueda H (2012) Detection of small molecule diagnostic markers with phage-based open-sandwich immuno-PCR. J Immunol Methods 377:1–7CrossRefGoogle Scholar
  25. 25.
    Yang C, Spinelli N, Perrier S, Defrancq E, Peyrin E (2015) Macrocyclic host-dye reporter for sensitive sandwich-type fluorescent aptamer sensor. Anal Chem 87:3139–3143CrossRefGoogle Scholar
  26. 26.
    Chen WW, Guo YM, Zheng WS, Xianyu YL, Wang Z, Jiang XY (2014) Recent progress of colorimetric assays based on gold nanoparticles for biomolecules. Chin J Anal Chem 42:307–314CrossRefGoogle Scholar
  27. 27.
    Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371CrossRefGoogle Scholar
  28. 28.
    Zhu C, Zhao Y, Yan MM, Huang YF, Yan J, Bai WH, Chen AL (2016) A sandwich dipstick assay for ATP detection based on split aptamer fragments. Anal Bioanal Chem 408:4151–4158CrossRefGoogle Scholar
  29. 29.
    Dong JX, Xu C, Wang H, Xiao ZL, Gee SJ, Li ZF, Wang F, Wu WJ, Shen YD, Yang JY, Sun YM, Hammock BD (2014) Enhanced sensitive immunoassay: noncompetitive phage anti-immune complex assay for the determination of malachite green and leucomalachite green. J Agric Food Chem 62:8752–8758CrossRefGoogle Scholar
  30. 30.
    Chovelon B, Durand G, Dausse E, Toulme JJ, Faure P, Peyrin E, Ravelet C (2016) ELAKCA: Enzyme-linked aptamer kissing complex assay as a small molecule sensing platform. Anal Chem 88:2570–2575CrossRefGoogle Scholar
  31. 31.
    Hara Y, Dong J, Ueda H (2013) Open-sandwich immunoassay for sensitive and broad-range detection of a shellfish toxin gonyautoxin. Anal Chim Acta 793:107–113CrossRefGoogle Scholar
  32. 32.
    Kubota K, Mizukoshi T, Miyano H (2013) A new approach for quantitative analysis of L-phenylalanine using a novel semi-sandwich immunometric assay. Anal Bioanal Chem 405:8093–8103CrossRefGoogle Scholar
  33. 33.
    Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84:6104–6109CrossRefGoogle Scholar
  34. 34.
    Quinton J, Charruault L, Nevers MC, Volland H, Dognon JP, Creminon C, Taran F (2010) Toward the limits of sandwich immunoassay of very low molecular weight molecules. Anal Chem 82:2536–2540CrossRefGoogle Scholar
  35. 35.
    Kobayashi N, Oyama H, Suzuki I, Kato Y, Umemura T, Goto J (2010) Oligosaccharide-assisted direct immunosensing of small molecules. Anal Chem 82:4333–4336CrossRefGoogle Scholar
  36. 36.
    Ihara M, Suzuki T, Kobayashi N, Goto J, Ueda H (2009) Open-sandwich enzyme immunoassay for one-step noncompetitive detection of corticosteroid 11-deoxycortisol. Anal Chem 81:8298–8304CrossRefGoogle Scholar
  37. 37.
    Zeidan E, Shivaji R, Henrich VC, Sandros MG (2016) Nano-SPRi aptasensor for the detection of progesterone in buffer. Sci Rep 6:26714CrossRefGoogle Scholar
  38. 38.
    Xiao R, Wang CW, Zhu AN, Long F (2016) Single functional magnetic-bead as universal biosensing platform for trace analyte detection using SERS-nanobioprobe. Biosens Bioelectron 79:661–668CrossRefGoogle Scholar
  39. 39.
    Li ZB, Miao XM, Xing K, Peng X, Zhu AH, Ling LS (2016) Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles. Biosens Bioelectron 80:339–343CrossRefGoogle Scholar
  40. 40.
    Zhang YL, Li HY, Xie JL, Chen M, Zhang DD, Pang PF, Wang HB, Wu Z, Yang WR (2017) Electrochemical biosensor for silver ions based on amplification of DNA-Au bio-bar codes and silver enhancement. J Electroanal Chem 785:117–124CrossRefGoogle Scholar
  41. 41.
    Wei J, Guo Z, Chen X, Han DD, Wang XK, Huang XJ (2015) Ultrasensitive and ultraselective impedimetric detection of Cr(VI) using crown ethers as high-affinity targeting receptors. Anal Chem 87:1991–1998CrossRefGoogle Scholar
  42. 42.
    Li SJ, Xia N, Yuan BQ, Du WM, Sun ZF, Zhou BB (2015) A novel DNA sensor using a sandwich format by electrochemical measurement of marker ion fluxes across nanoporous alumina membrane. Electrochim Acta 159:234–241CrossRefGoogle Scholar
  43. 43.
    Guo LQ, Hu H, Sun RQ, Chen GA (2009) Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T–Hg(II)–T base pairs. Talanta 79:775–779CrossRefGoogle Scholar
  44. 44.
    Li M, Zhou XJ, Ding WQ, Guo SW, Wu NQ (2013) Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens Bioelectron 41:889–893CrossRefGoogle Scholar
  45. 45.
    Chen HQ, Yuan F, Wang SZ, Xu J, Zhang YY, Wang L (2013) Near-infrared to near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(II) ions in solution. Analyst 138:2392–2397CrossRefGoogle Scholar
  46. 46.
    Fang Y, Zhou Y, Li JY, Rui QQ, Yao C (2015) Naphthalimide-Rhodamine based chemosensors for colorimetric and fluorescent sensing Hg2+ through different signaling mechanisms in corresponding solvent systems. Sens Actuator B-Chem 215:350–359CrossRefGoogle Scholar
  47. 47.
    Vilela D, Gonzalez MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43CrossRefGoogle Scholar
  48. 48.
    Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens Actuator B-Chem 238:888–902CrossRefGoogle Scholar
  49. 49.
    Alizadeh A, Khodaei MM, Karami C, Workentin MS, Shamsipur M, Sadeghi M (2010) Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 21:315503CrossRefGoogle Scholar
  50. 50.
    Alizadeh A, Khodaei MM, Hamidi Z, Bin Shamsuddin M (2014) Naked-eye colorimetric detection of Cu2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles. Sens Actuator B-Chem 190:782–791CrossRefGoogle Scholar
  51. 51.
    Alizadeh A, Abdi G, Khodaei MM (2016) Colorimetric and visual detection of silver(I) using gold nanoparticles modified with furfuryl alcohol. Microchim Acta 183:1995–2003CrossRefGoogle Scholar
  52. 52.
    Hsu IH, Hsu TC, Sun YC (2011) Gold-nanoparticle-based graphite furnace atomic absorption spectrometry amplification and magnetic separation method for sensitive detection of mercuric ions. Biosens Bioelectron 26:4605–4609CrossRefGoogle Scholar
  53. 53.
    Yao L, Teng J, Zhu MY, Zheng L, Zhong YH, Liu GD, Xue F, Chen W (2016) MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions. Biosens Bioelectron 85:331–336CrossRefGoogle Scholar
  54. 54.
    Kuo SY, Li HH, Wu PJ, Chen CP, Huang YC, Chan YH (2015) Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Anal Chem 87:4765–4771CrossRefGoogle Scholar
  55. 55.
    Qiao XX, Zhang XJ, Tian Y, Meng YG (2016) Progresses on the theory and application of quartz crystal microbalance. Appl Phys Rev 3:206–222CrossRefGoogle Scholar
  56. 56.
    Vashist SK, Vashist P (2011) Recent advances in quartz crystal microbalance-based sensors. J Sens 571405Google Scholar
  57. 57.
    Sheng ZH, Han JH, Zhang JP, Zhao H, Jiang L (2011) Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance. Colloid Surf B-Biointerfaces 87:289–292CrossRefGoogle Scholar
  58. 58.
    Chen Q, Wu XJ, Wang DZ, Tang W, Li N, Liu F (2011) Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II) ions with high sensitivity and tunable dynamic range. Analyst 136:2572–2577CrossRefGoogle Scholar
  59. 59.
    Dong ZM, Zhao GC (2012) Quartz crystal microbalance aptasensor for sensitive detection of mercury(II) based on signal amplification with gold nanoparticles. Sensors 12:7080–7094CrossRefGoogle Scholar
  60. 60.
    Zheng P, Li M, Jurevic R, Cushing SK, Liu YX, Wu NQ (2015) A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. Nanoscale 7:11005–11012CrossRefGoogle Scholar
  61. 61.
    Zhang XG, Dai ZG, Si SY, Zhang XL, Wu W, Deng HB, Wang FB, Xiao XH, Jiang CZ (2017) Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions. Small 13:1603347CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations