Skip to main content

A Statistical Approach to Clinical Trial Simulations

  • Chapter
  • First Online:
Biopharmaceutical Applied Statistics Symposium

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Drug development is not for the fainthearted. We have heard repeatedly over the years regarding the process of bringing a new compound to the market, that every delay will add millions of dollars in added expenses and lost revenues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beal, S. L., & Sheiner, L. B. (1992). NONMEM user’s guide. San Francisco: NONMEM Project Group, University of California, San Francisco.

    Google Scholar 

  • Bhattaram, V. A., Booth, B. P., Ramchandani, R. P., Beasley, B. N., Wang, Y., Tandon, V., et al. (2005). Impact of pharmacometrics on drug approval and labeling decisions: a survey of 42 new drug applications. American Association of Pharmaceutical Scientists Journal, 7, E503–E5122005.

    Google Scholar 

  • Biomarkers Definition Working Group. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics, 69(3), 89–95.

    Article  Google Scholar 

  • Burman, C. F., Hamren, B., & Olsson, P. (2005). Modelling and simulation to improve decision-making in clinical development. Pharmaceutical Statistics, 4(1), 47–58.

    Article  Google Scholar 

  • Chabaud, S., Girard, P., Nony, P., & Boissel, J. P. (2002). Clinical trial simulation using therapeutic effect modeling: Application to ivabradine efficacy in patients with angina pectoris. Journal of Pharmacokinetics and Pharmacodynamics, 29, 339–363.

    Google Scholar 

  • Chang, M. (2010). Monte Carlo simulation for the pharmaceutical industry: Concepts, algorithms, and case studies. Chapman & Hall/CRC Biostatistics Series.

    Google Scholar 

  • Chang, M. (2014). Adaptive design theory and implementation using SAS and R. CRC Press.

    Google Scholar 

  • Dragalin, V., Bornkamp, B., Bretz, F., Miller, F., Padmanabhan, S. K., Patel, N., et al. (2010). A simulation study to compare new adaptive dose-ranging designs. Statistics in Biopharmaceutical Research, 2, 487–512.

    Article  Google Scholar 

  • Eriksen, S., & Keller, L. R. (1993). A multiattribute-utility-function approach to weighing the risks and benefits of pharmaceutical agents. Medical Decision Making, 13(2), 118–125.

    Article  Google Scholar 

  • Ette, E., Godfrey, C., Ogenstad, S., & Williams, P. (2003). Analysis of simulated clinical trials. In H. Kimko, & S. Duffull (Eds.), Simulation for designing clinical trials: A pharmacokinetic/pharmacodynamic modeling perspective. New York: Marcel Dekker.

    Google Scholar 

  • Food and Drug Administration. (1997). The Food and Drug Modernization Act of 1997, in Code of Federal Regulations Title 21 Part 314 Subpart H.

    Google Scholar 

  • Food and Drug Administration, Guidance for Industry. (2003). Exposure-response relationships—Study design, data analysis, and regulatory applications (pp. 1–25). Rockville, MD.

    Google Scholar 

  • Frison, L., & Pocock, S. J. (1992). Repeated measures in clinical trials: Analysis using mean summary statistics and its implications for design. Statistics in Medicine, 11, 1685–1704.

    Article  Google Scholar 

  • Gao, P., Liu, L., & Metha, C. (2013). Exact inference for adaptive group sequential designs. Statistics in Medicine.

    Google Scholar 

  • Gobburu, J. V. S., & Marroum, P. J. (2001). Utilisation of pharmacokinetic/pharmacodynamic modeling and simulation in regulatory decision-making. Clinical Pharmacokinetics, 40(12), 883–892.

    Article  Google Scholar 

  • Gobburu, J. V. S., & Sekar, V. J. (2002). Application of modeling and simulation to integrate clinical pharmacology knowledge across a new drug application. International Journal of Clinical Pharmacology and Therapeutics, 40(7), 281–288.

    Article  Google Scholar 

  • Graham, G., Gupta, S., & Aarons, L. (2002). Determination of an optimal dosage regimen using a bayesian decision analysis of efficacy and adverse effect data. Journal of Pharmacokinetics and Pharmacodynamics, 29(1), 67–88.

    Article  Google Scholar 

  • Herson, J. (2009). Data and safety monitoring committees in clinical trials. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Holford, N. H. G. (1990). Concepts and usefulness of pharmacokinetic/pharmacodynamic modeling. Fundamental & Clinical Pharmacology, 4(Suppl. 2), 93S–101S.

    Article  Google Scholar 

  • Holford, N., & Ploeger, B. A. (2010). Clinical trial simulation: A review. Clinical Pharmacology and Therapeutics, 88, 166–182.

    Article  Google Scholar 

  • Holford, N. H. G., Kimko, H. C., Monteleone, J. P. R., & Peck, C. C. (2000). Simulation of clinical trials. Annual Review of Pharmacology and Toxicology, 40, 209–234.

    Article  Google Scholar 

  • Huang, X., & Li, J. (2007). Pharmacometrics: The science of quantitative pharmacology. American Journal of Pharmaceutical Education, 71, 75.

    Article  Google Scholar 

  • Jadhav, P. R., Mehta, M. U., & Gobburu, J. V. S. (2004). How biomarkers can improve clinical drug development. American Pharmaceutical Review, 7(3), 62–64.

    Google Scholar 

  • Jonsson, S., & Karlsson, M. O. (2005). Estimation of dosing strategies aiming at maximizing utility or responder probability, using oxybutynin as an example drug. European Journal of Pharmaceutical Sciences, 25(1), 123–132.

    Article  Google Scholar 

  • Kimko, H., & Duffull, S. B. (2002). Simulation for designing clinical trials: A pharmacokinetic-pharmacodynamic modeling perspective. CRC Press.

    Google Scholar 

  • Kimko, H., & Peck, C. C. (2010). Clinical trial simulations: Applications and trends. Springer.

    Google Scholar 

  • Lacombe, P. A., Vicente, J. A. G., Pages, J. C., & Morselli, P. L. (1996). Causes and problems of non response or poor response to drugs. Drugs, 51, 552–570.

    Article  Google Scholar 

  • Maronde, R. F., Chan, L. S., Larsen, F. J., Strandberg, L. R., Laventurier, M. F., & Sullivan, S. R. (1989). Underutilization of antihypertensive drugs and associated hospitalisation. Medical Care, 27, 1159–1166.

    Article  Google Scholar 

  • Moore, A., Sellwood, W., & Stirling, J. (2000). Compliance and psychological reactance in schizophrenia. British Journal of Clinical Psychology.

    Google Scholar 

  • Mouksassi, M. S., Marier, J. F., Cyran, J., & Vinks, A. A. (2009). Clinical trial simulations in pediatric patients using realistic covariates: Application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome. Clinical Pharmacology & Therapeutics.

    Google Scholar 

  • Nestorov, I., et al. (2001). Modeling and simulation for clinical trial design involving a categorical response: A phase II case study with naratriptan. Pharmaceutical Research, 18(8), 1210–1219.

    Article  Google Scholar 

  • O’Brien, P. C., Zhang, D., & Bailey, K. R. (2005). Semi-parametric and non-parametric methods for clinical trials with incomplete data. Statistics in Medicine, 24, 341–358.

    Article  MathSciNet  Google Scholar 

  • Ogenstad, S. (1997). Analysis and design of repeated measures in clinical trials using summary statistics. Journal of Biopharmaceutical Statistics, 7(4), 593–604.

    Article  MathSciNet  Google Scholar 

  • Peck, C. C., Rubin, D. B., & Sheiner, L. B. (2003). Hypothesis: A single clinical trial plus causal evidence of effectiveness is sufficient for drug approval. Clinical Pharmacology & Therapeutics, 73, 481–490.

    Article  Google Scholar 

  • Pong, A., & Chow, S. C. (2010). Handbook of adaptive designs in pharmaceutical and clinical development. Taylor & Francis, New York: Chapman and Hall/CRC Press.

    Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Software] (Version 3.1.1). http://www.R-project.org/.

  • Riggs, M. M., Godfrey, C. J., & Gastonguay, M. R. (2007). Clinical trial simulation: efficacy trial. In E. I. Ette, & P. J. Williams (Eds.), Pharmacometrics: The science of quantitative pharmacology (pp. 881–900). Hoboken, NJ: Wiley.

    Google Scholar 

  • Royston, P., & Parmar, M. K. B. (2002). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine, 21, 2175–2197.

    Article  Google Scholar 

  • Sheiner, L. B. (1997). Learning versus confirming in clinical drug development. Clinical Pharmacology and Therapeutics, 61(3), 275–291.

    Article  Google Scholar 

  • Sheiner, L. B., & Ludden, T. M. (1992). Population pharmacokinetics/dynamics. Annual Review of Pharmacology and Toxicology, 32, 185–209.

    Article  Google Scholar 

  • Sheiner, L., & Melmon, K. (1978). The utility function of antihypertensive therapy. Annals of the New York Academy of Sciences, 304, 112–127.

    Article  Google Scholar 

  • Sheiner, L. B., & Steimer, J.-L. (2000). Pharmacokinetic/pharmacodynamic modeling in drug development. Annual Review of Pharmacology and Toxicology, 40(1), 67–95.

    Article  Google Scholar 

  • Spagnoli, A., Ostino, G., & Borga, A. D. (1989). Drug compliance and unreported drugs in the elderly. Journal of the American Geriatrics Society, 37, 619–624.

    Article  Google Scholar 

  • The International Conference on Harmonization (ICH) http://www.ifpma.org/ich1.html.

  • Wang, W., Hallow, K. M., & James, D. A. (2015). A tutorial on RxODE: Simulating differential equation pharmacometric models in R. American Society for Clinical Pharmacology and Therapeutics. CPT: Pharmacometrics & Systems Pharmacology.

    Google Scholar 

  • Wassmer, G., & Vandemeulebroecke, M. (2006). A brief review on software development for group sequential and adaptive designs. Biometrical Journal, 48, 732–737.

    Article  MathSciNet  Google Scholar 

  • Wathen, J. K., & Thall, P. F. (2008). Bayesian adaptive model selection for optimizing group sequential clinical trials. Statistics in Medicine, 27(27), 5586–5604.

    Article  MathSciNet  Google Scholar 

  • Westfall, P. H., Tsai, K., Ogenstad, S., Tomoiaga, A., Moseley, S., & Lu, Y. (2008). Clinical trials simulation: A statistical approach. Journal of Biopharmaceutical Statistics, 18, 611–630.

    Article  MathSciNet  Google Scholar 

  • Westfall, P. H., Dmitrienko, A., DeSouza, C., & Tomoiaga, A. (2010). Clinical trials simulation: A publicly available, grid-enabled, GUI-Driven SAS® System. SAS Global Forum 2010, Paper 180-2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Ogenstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogenstad, S. (2018). A Statistical Approach to Clinical Trial Simulations. In: Peace, K., Chen, DG., Menon, S. (eds) Biopharmaceutical Applied Statistics Symposium . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7829-3_1

Download citation

Publish with us

Policies and ethics